, Volume 22, Issue 4, pp 251–262 | Cite as

Modulation of gastric mucosal inflammatory responses to Helicobacter pylori via ghrelin-induced protein kinase Cδ tyrosine phosphorylation

Research Article


A peptide hormone, ghrelin, plays a key role in modulation of gastric mucosal inflammatory responses to Helicobacter pylori by controlling the activation of constitutive nitric oxide synthase via Src/Akt-dependent phosphorylation that requires phosphatidylinositol 3-kinase (PI3K) participation. Here, we examined the relationship among PI3K; its upstream effector, protein kinase C (PKC); and cSrc. We show that stimulation of gastric mucosal cells with H. pylori LPS leads to the activation and membrane translocation of Ser-phosphorylated PKCδ, while the effect of ghrelin is reflected in the phosphorylation of membrane-associated PKCδ on Tyr. Further, we demonstrate that in response to the LPS-induced PKCδ activation both PI3K and Src show a marked increase in their Ser phosphorylation, while the effect of ghrelin is manifested in the phosphorylation of PI3K and cSrc at Tyr. Moreover, whereas Tyr phosphorylation of PKCδ exhibited susceptibility to cSrc inhibitor (PP2), the inhibitor of PKC (GF109203X) but not that of cSrc (PP2) blocked the Tyr phosphorylation of PI3K, while ghrelin-induced cSrc phosphorylation at Tyr was subject to inhibition by the inhibitors of PKC and PI3K. Thus, our findings stipulate the prerequisite of PKCδ in the activation of PI3K as well as cSrc, and imply that PI3K activation provides an essential platform for ghrelin-induced cSrc activation through autophosphorylation at Tyr416. We also reveal that ghrelin-elicited up-regulation in PKCδ activation by Tyr phosphorylation shows dependence on cSrc activity.


Helicobacter pylori Gastric mucosa Ghrelin PKCδ activation PI3K cSrc 


  1. Amos S, Martin PM, Polar GA, Parsons SJ, Hussainani IM (2005) Phorbol 12-myristate 13-acetate induces epidermal growth factor receptor transactivation via protein kinase Cδ/cSrc pathways in glioblastoma cells. J Biol Chem 280:7729–7738PubMedCentralPubMedCrossRefGoogle Scholar
  2. Backert S, Neumann M (2010) What a disorder: proinflammatory signaling pathways induced by Helicobacter pylori. Trends Microbiol 18:479–486PubMedCrossRefGoogle Scholar
  3. Brandt DT, Goerke A, Heuer M et al (2003) Protein kinase C delta induces Src kinase activity via activation of protein tyrosine phosphatase PTP alpha. J Biol Chem 278:34073–34078PubMedCrossRefGoogle Scholar
  4. Buitrago L, Bhavanasi D, Dangelmaier C et al (2013) Tyrosine phosphorylation on spleentyrosine kinase (Syk) is differentially regulated in human and murine platelets by protein kinase C isoforms. J Biol Chem 288:29160–29169PubMedCrossRefGoogle Scholar
  5. Cahill CM, Rogers JT, Walker WA (2012) The role of phosphoinositide 3-kinase signaling in intestinal inflammation. J Signal Transduct vol 2012, Article ID 358476. doi:10.1155/2012/358476
  6. Cao X, Kambe F, Moeller LC, Refetoff S, Seo H (2005) Thyroid hormone induces rapid activation of Akt/protein kinase B-mammalian target of rapamycin p70S6K cascade through phosphatidylinositol 3-kinase in human fibroblasts. Mol Endocrinol 19:102–112PubMedCrossRefGoogle Scholar
  7. Cao X, Kambe F, Yamaguchi M, Seo H (2009) Thyroid-hormone-dependent activation of the phosphoinositide 3-kinase/Akt cascade requires Src and enhances neuronal survival. Biochem J 424:201–209PubMedCrossRefGoogle Scholar
  8. Carpenter S, O’Neill LAJ (2009) Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signaling proteins. Biochem J 422:1–10PubMedCrossRefGoogle Scholar
  9. Chen YT, Tsai SH, Sheu SY, Tsai LH (2010) Ghrelin improves LPS-induced gastrointestinal motility disturbances: role of NO and prostaglandin E2. Shock 33:205–212PubMedCrossRefGoogle Scholar
  10. Denning MF, Dlugosz AA, Thradgill DW, Magnuson T, Yuspa SH (1996) Activation of the epidermal growth factor receptor signal transduction pathway stimulates tyrosine phosphorylation of protein kinase Cδ. J Biol Chem 271:5325–5331PubMedCrossRefGoogle Scholar
  11. Guha M, Mackman N (2002) The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J Biol Chem 277:32124–32132PubMedCrossRefGoogle Scholar
  12. Haynes MP, Li L, Sinha D et al (2003) Src kinase mediates phosphatidylinositol 3-kinase/Akt-dependent rapid endothelial nitric-oxide synthase activation by estrogen. J Biol Chem 278:2118–2123PubMedCrossRefGoogle Scholar
  13. Jacamo R, Sinnett-Smith J, Rey O, Waldron RT, Rozengurt E (2008) Sequential protein kinase C (PKC)-dependent and PKC-independent protein kinase D catalytic activation via Gq-coupled receptors. J Biol Chem 283:12877–12887PubMedCentralPubMedCrossRefGoogle Scholar
  14. Jiang T, Qiu Y (2003) Interaction between Src and a C-terminal proline-rich motif of Akt is required for Akt activation. J Biol Chem 278:15789–15793PubMedCrossRefGoogle Scholar
  15. Joseloff E, Cataisson C, Aamodt H et al (2002) Src family kinases phosphorylate protein kinase Cδ on tyrosine residues and modify the neoplastic phenotype of skin keratinocytes. J Biol Chem 277:12318–12323PubMedCrossRefGoogle Scholar
  16. Kazi JU (2011) The mechanism of protein kinase C regulation. Front Biol 6:328–336Google Scholar
  17. Kojima M, Hosoda H, Date Y et al (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660PubMedCrossRefGoogle Scholar
  18. Konishi H, Tanaka M, Takemura Y et al (1997) Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proc Natl Acad Sci USA 94:1233–1237CrossRefGoogle Scholar
  19. Korhonen R, Lahti A, Kankaanrata H, Moilanen E (2005) Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy 4:471–479PubMedCrossRefGoogle Scholar
  20. Kubo-Murai M, Hazeki K, Sukenobu N et al (2007) Protein kinase Cδ binds TIRAP/Mal to participate in TLR signaling. Mol Immunol 44:2257–2264PubMedCrossRefGoogle Scholar
  21. Lee S, Lin X, Nam NH et al (2003) Determination of the substrate-docking site of protein tyrosine kinase c-terminal Src kinase. Proc Natl Acad Sci USA 100:14707–14712PubMedCentralPubMedCrossRefGoogle Scholar
  22. Lee JY, Chiu YH, Asara J, Cantley LC (2011) Inhibition of PI3K binding to activators by serine phosphorylation of PI3K regulatory subunit p85α Src homology-2 domains. Proc Natl Acad Sci USA 108:14157–14162PubMedCentralPubMedCrossRefGoogle Scholar
  23. Liu F, Roth RA (1994) Insulin-stimulated tyrosine phosphorylation of protein kinase Cα: evidence for direct interaction of the insulin receptor and protein kinase C in cells. Biochem Biophys Res Commun 200:1570–1577PubMedCrossRefGoogle Scholar
  24. Lodeiro M, Alen BO, Mosteiro CS et al (2011) The SHP-1 protein tyrosine phosphatase negatively modulates Akt signaling in the ghrelin/GHSR1a system. Mol Biol Cell 22:4182–4191PubMedCentralPubMedCrossRefGoogle Scholar
  25. Loegering DJ, Lennartz MR (2011) Protein kinase C and toll-like receptor signaling. SAGE-Hindawi access to research enzyme research vol 2011, Article ID 537821. doi:10.4061/2011/537821
  26. Lutrell DK, Lutrell LM (2004) Not so strange bedfellows: G-protein-coupled receptors and Src family kinases. Oncogene 23:7969–7978CrossRefGoogle Scholar
  27. Marshall BJ, Royce H, Annear DI et al (1984) Original isolation of Campylobacter pyloridis from human gastric mucosa. Microbios Lett 25:83–88Google Scholar
  28. Osawa H, Nakazato M, Date Y et al (2005) Impaired production of gastric ghrelin in chronic gastritis associated with Helicobacter pylori. J Clin Endocrinol Metab 90:10–16PubMedCrossRefGoogle Scholar
  29. Peeters TL (2005) Ghrelin: a new player in the control of gastrointestinal functions. Gut 54:1638–1649PubMedCentralPubMedCrossRefGoogle Scholar
  30. Pula G, Crosby D, Baker J, Poole AW (2005) Functional interaction of protein kinase Cα with tyrosine kinase Syk and Src in human platelets. J Biol Chem 280:7194–7205PubMedCrossRefGoogle Scholar
  31. Rybin VO, Guo J, Gretsberg Z, Elouardighi H, Steinberg SF (2007) Protein kinase Cε (PKCε) and Src control PKCδ activation loop phosphorylation in cardiomyocytes. J Biol Chem 282:23631–23638PubMedCentralPubMedCrossRefGoogle Scholar
  32. Shirai Y, Saito N (2002) Activation mechanisms of protein kinase C: maturation, catalytic activation, and targeting. J Biochem 122:663–668CrossRefGoogle Scholar
  33. Sibilia V, Pagani F, Rindi G et al (2008) Central ghrelin gastroprotection involves nitric oxide/prostaglandin cross-talk. Br J Pharmacol 154:688–697PubMedCentralPubMedCrossRefGoogle Scholar
  34. Slomiany BL, Slomiany A (2010a) Ghrelin protection against lipopolysaccharide-induced gastric mucosal cell apoptosis involves constitutive nitric oxide synthase-mediated caspase-3 S-nitrosylation. Mediators Inflamm vol 2010, Article ID 280464. doi:10.1155/2010/280464
  35. Slomiany BL, Slomiany A (2010b) Helicobacter pylori induces disturbances in gastric mucosal Akt activation through inducible nitric oxide synthase-dependent S-nitrosylation: effect of ghrelin. ISRN Gastroenterol. doi:10.5402/2011/308727 PubMedCentralPubMedGoogle Scholar
  36. Slomiany BL, Slomiany A (2011a) Ghrelin suppression of Helicobacter pylori-induced gastric mucosal expression of iNOS is mediated through the inhibition of IKK-β activation by cNOS-dependent S-nitrosylation. Open J Cell Biol 1:1–10. doi:10.4236/ojcb CrossRefGoogle Scholar
  37. Slomiany BL, Slomiany A (2011b) Role of ghrelin-induced cSrc activation in modulation of gastric mucosal inflammatory responses to Helicobacter pylori. Inflammopharmacology 19:197–204PubMedCrossRefGoogle Scholar
  38. Slomiany A, Slomiany BL (2012) Phosphatidylglycerol-containing ER-transport vesicles built and restore outer mitochondrial membrane and deliver nuclear DNA translation products to generate cardiolipin in the inner mitochondrial membrane. Adv Biol Chem 2:132–145CrossRefGoogle Scholar
  39. Slomiany BL, Slomiany A (2013a) Induction in gastric mucosal prostaglandin and nitric oxide by Helicobacter pylori is dependent on MAPK/ERK-mediated activation of IKK-β and cPLA2: modulatory effect of ghrelin. Inflammopharmacology 21:241–251PubMedCrossRefGoogle Scholar
  40. Slomiany BL, Slomiany A (2013b) Role of ghrelin-induced phosphatidylinositol 3-kinase activation in modulation of gastric mucosal inflammatory responses to Helicobacter pylori. Inflammopharmacology. doi:10.1007/s10787-013-0190-8 Google Scholar
  41. Storz P, Doppler H, Johannes FJ, Toker A (2003) Tyrosine phosphorylation of protein kinase D in the pleckstrin homology domain leads to activation. J Biol Chem 278:17969–17976PubMedCrossRefGoogle Scholar
  42. Sun X, Wu F, Datta R, Kharbanada S, Kufe D (2000) Interaction between protein kinase Cδ and c-Abl tyrosine kinase in the cellular response to oxidative stress. J Biol Chem 275:7470–7473PubMedCrossRefGoogle Scholar
  43. Suzuki H, Masaoka T, Nomoto Y et al (2006) Increased levels of plasma ghrelin in peptic ulcer disease. Aliment Pharmacol Ther 24(Suppl 4):120–126Google Scholar
  44. Tamiya S, Delmere NA (2005) Studies of tyrosine phosphorylation and Src family tyrosine kinases in the lens epithelium. Vis Sci 46:2076–2081Google Scholar
  45. Walker VG, Ammer A, Cao Z et al (2007) PI3K activation is required for PMA-directed activation of cSrc by AFAP-110. Am J Physiol Cell Physiol 293:C119–C132PubMedCrossRefGoogle Scholar
  46. Wang QJ (2006) PKD at the crossroads of DAG and PKC signaling. Trends Pharmacol Sci 27:317–323PubMedCrossRefGoogle Scholar
  47. Waseem TM, Duxbury M, Ito H et al (2008) Exogenous ghrelin modulates release of proinflammatory and anti-inflammatory cytokines in LPS-stimulated macrophages through distinct signaling pathways. Surgery 143:334–342PubMedCentralPubMedCrossRefGoogle Scholar
  48. Wen J, Ribeiro R, Zhang Y (2011) Specific PKC isoforms regulate LPS-stimulated iNOS induction in murine microglial cells. J Neuroinflamm 8:38CrossRefGoogle Scholar
  49. Wrenn RW, Herman LE (1995) Integrin-linked tyrosine phosphorylation increases membrane association of protein kinase Cα in pancreatic cells. Biochem Biophys Res Commun 2008:978–984CrossRefGoogle Scholar
  50. Xu X, Bong SJ, Chang HH, Jin ZG (2008) Molecular mechanism of ghrelin-mediated endothelial nitric oxide synthase activation. Endocrinology 149:4183–4192PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Research Center, C875, Rutgers School of Dental MedicineRutgers, The State University of New JerseyNewarkUSA

Personalised recommendations