, Volume 21, Issue 1, pp 91–99

MT1-MMP expression level status dictates the in vitro action of lupeol on inflammatory biomarkers MMP-9 and COX-2 in medulloblastoma cells

  • Borhane Annabi
  • Eric Vaillancourt-Jean
  • Richard Béliveau
Research Article


Local inflammation-induced extracellular matrix structural changes are a prerequisite to neoplastic invasion by pediatric intracranial tumors. Accordingly, increased expression of matrix metalloproteinases MMP-2 and MMP-9, two inflammation-induced matrix metalloproteinases (MMPs), may further aid the transformed cells either to infiltrate adjacent tissues or to enter the peripheral circulation. In the context of neuroinflammation, MMP-9 has been linked to processes such as blood–brain barrier opening and invasion of neural tissue by blood-derived immune cells. Given its reported anti-inflammatory and anticancer properties, we investigated the in vitro pharmacological effects of lupeol, a diet-derived triterpenoid, on MMP-9 and cyclooxygenase (COX)-2 expressions in a pediatric medulloblastoma DAOY cell line model. Lupeol was unable to inhibit the increased MMP-9 and COX-2 expression in phorbol 12-myristate 13-acetate (PMA)-treated cells, but was rather found to synergize with PMA to induce both biomarkers’ expression. A contribution of the membrane type-1 (MT1)-MMP was also revealed, since lupeol/PMA treatments triggered proMMP-2 activation, and that MT1-MMP gene silencing reversed the combined effects of lupeol/PMA on both MMP-9 and COX-2. The mRNA stabilizing factor HuR was also found increased in the combined lupeol/PMA treatment, suggesting stabilization processes of the MMP-9 and COX-2 transcripts. We postulate that lupeol’s anti-inflammatory properties may exert better pharmacological action within low MT1-MMP expressing tumors. Furthermore, these evidences add up to the new pleiotropic molecular mechanisms of action of MT1-MMP, and prompt for evaluating the future in vitro pharmacological properties of lupeol under pro-inflammatory experimental set-up.


Medulloblastoma MMP-9 MT1-MMP NF-κB COX-2 Lupeol 







Matrix metalloproteinase


Membrane type-1 MMP


Nuclear factor kappa B


Phorbol 12-myristate 13-acetate


Prostaglandin E


  1. Alfranca A, López-Oliva JM, Genís L et al (2008) PGE2 induces angiogenesis via MT1-MMP-mediated activation of the TGFbeta/Alk5 signaling pathway. Blood 112:1120–1128PubMedCrossRefGoogle Scholar
  2. Amalinei C, Caruntu ID, Giusca SE et al (2010) Matrix metalloproteinases involvement in pathologic conditions. Rom J Morphol Embryol 51:215–228PubMedGoogle Scholar
  3. Annabi B, Lee YT, Martel C et al (2003) Radiation induced-tubulogenesis in endothelial cells is antagonized by the antiangiogenic properties of green tea polyphenol (-) epigallocatechin-3-gallate. Cancer Biol Ther 2:642–649PubMedGoogle Scholar
  4. Annabi B, Bouzeghrane M, Moumdjian R et al (2005) Probing the infiltrating character of brain tumors: inhibition of RhoA/ROK-mediated CD44 cell surface shedding from glioma cells by the green tea catechin EGCg. J Neurochem 94:906–916PubMedCrossRefGoogle Scholar
  5. Annabi B, Rojas-Sutterlin S, Laflamme C et al (2008a) Tumor environment dictates medulloblastoma cancer stem cell expression and invasive phenotype. Mol Cancer Res 6:907–916PubMedCrossRefGoogle Scholar
  6. Annabi B, Rojas-Sutterlin S, Laroche (2008b) The diet-derived sulforaphane inhibits matrix metalloproteinase-9-activated human brain microvascular endothelial cell migration and tubulogenesis. Mol Nutr Food Res 52:692–700PubMedCrossRefGoogle Scholar
  7. Annabi B, Lachambre MP, Plouffe K et al (2009a) Modulation of invasive properties of CD133+ glioblastoma stem cells: a role for MT1-MMP in bioactive lysophospholipid signaling. Mol Carcinog 48:910–919PubMedCrossRefGoogle Scholar
  8. Annabi B, Laflamme C, Sina A et al (2009b) A MT1-MMP/NF-kappaB signaling axis as a checkpoint controller of COX-2 expression in CD133+U87 glioblastoma cells. J Neuroinflammation 6:8PubMedCrossRefGoogle Scholar
  9. Annabi B, Lachambre MP, Plouffe K et al (2009c) Propranolol adrenergic blockade inhibits human brain endothelial cells tubulogenesis and matrix metalloproteinase-9 secretion. Pharmacol Res 60:438–445PubMedCrossRefGoogle Scholar
  10. Annabi B, Vaillancourt-Jean E, Weil AG et al (2010) Pharmacological targeting of beta-adrenergic receptor functions abrogates NF-kappaB signaling and MMP-9 secretion in medulloblastoma cells. Onco Targets Ther 3:219–226PubMedCrossRefGoogle Scholar
  11. Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760PubMedCrossRefGoogle Scholar
  12. Béliveau R, Gingras D (2007) Role of nutrition in preventing cancer. Can Fam Phys 53:1905–1911Google Scholar
  13. Belkaid A, Fortier S, Cao J et al (2007) Necrosis induction in glioblastoma cells reveals a new “bioswitch” function for the MT1-MMP/G6PT signaling axis in proMMP-2 activation versus cell death decision. Neoplasia 9:332–340PubMedCrossRefGoogle Scholar
  14. Bu X, Zhao C, Dai X (2011) Involvement of COX-2/PGE(2) pathway in the upregulation of MMP-9 expression in pancreatic cancer. Gastroenterol Res Pract 2011:214269PubMedGoogle Scholar
  15. Chambers AF, Matrisian LM (1997) Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 89:1260–1270PubMedCrossRefGoogle Scholar
  16. Currie JC, Fortier S, Sina A et al (2007) MT1-MMP down-regulates the glucose 6-phosphate transporter expression in marrow stromal cells: a molecular link between pro-MMP-2 activation, chemotaxis, and cell survival. J Biol Chem 282:8142–8149PubMedCrossRefGoogle Scholar
  17. Fan XC, Steitz JA (1998) Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J 17:3448–3460PubMedCrossRefGoogle Scholar
  18. Fernandez MA, de lasHeras B, Garcia MD et al (2001) A new insights into the mechanism of action of the anti-inflammatory triterpene lupeol. J Pharm Pharmacol 53:1533–1539PubMedCrossRefGoogle Scholar
  19. Fortier S, Labelle D, Sina A et al (2008a) Silencing of the MT1-MMP/G6PT axis suppresses calcium mobilization by sphingosine-1-phosphate in glioblastoma cells. FEBS Lett 582:799–804PubMedCrossRefGoogle Scholar
  20. Fortier S, Touaibia M, Lord-Dufour S et al (2008b) Tetra- and hexavalent mannosides inhibit the pro-apoptotic, antiproliferative and cell surface clustering effects of concanavalin-A: impact on MT1-MMP functions in marrow-derived mesenchymal stromal cells. Glycobiology 18:195–204PubMedCrossRefGoogle Scholar
  21. Geetha T, Varalakshmi P (1999) Anticomplement activity of triterpenes from Crataeva nurvala stem bark in adjuvant arthritis in rats. Gen Pharmacol 32:495–497PubMedCrossRefGoogle Scholar
  22. Han YP, Tuan TL, Wu H et al (2001) TNF-alpha stimulates activation of pro-MMP2 in human skin through NF-(kappa)B mediated induction of MT1-MMP. J Cell Sci 114:131–139PubMedGoogle Scholar
  23. Kang MJ, Ryu BK, Lee MG et al (2008) NF-kappaB activates transcription of the RNA-binding factor HuR, via PI3K-AKT signaling, to promote gastric tumorigenesis. Gastroenterology 135:2030–2042PubMedCrossRefGoogle Scholar
  24. Kanu OO, Mehta A, Di C et al (2009) Glioblastoma multiforme: a review of therapeutic targets. Expert Opin Ther Targets 13:701–718PubMedCrossRefGoogle Scholar
  25. Mazloom A, Zangeneh AH, Paulino AC (2010) Prognostic factors after extraneural metastasis of medulloblastoma. Int J Radiat Oncol Biol Phys 78:72–78PubMedCrossRefGoogle Scholar
  26. Moreau RA, Whitaker BD, Hicks KB (2002) Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Prog Lipid Res 41:457–500PubMedCrossRefGoogle Scholar
  27. Ou Y, Li W, Li X et al (2011) Sinomenine reduces invasion and migration ability in fibroblast-like synoviocytes cells co-cultured with activated human monocytic THP-1 cells by inhibiting the expression of MMP-2, MMP-9, CD147. Rheumatol Int 31:1479–1485PubMedCrossRefGoogle Scholar
  28. Packer RJ (2007) Craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. Curr Neurol Neurosci Rep 7:130–132CrossRefGoogle Scholar
  29. Papi Reddy K, Singh AB, Puri A, Srivastava AK, Narender T (2009) Synthesis of novel triterpenoid (lupeol) derivatives and their in vivo antihyperglycemic and antidyslipidemic activity. Bioorg Med Chem Lett 19:4463–4466PubMedCrossRefGoogle Scholar
  30. Proulx-Bonneau S, Pratt J, Annabi B (2011) A role for MT1-MMP as a cell death sensor/effector through the regulation of endoplasmic reticulum stress in U87 glioblastoma cells. J Neurooncol 104:33–43PubMedCrossRefGoogle Scholar
  31. Saleem M (2009) Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett 285:109–115PubMedCrossRefGoogle Scholar
  32. Saleem M, Afaq F, Adhami VM et al (2004) Lupeol modulates NF-kappaB and PI3K/Akt pathways and inhibits skin cancer in CD-1 mice. Oncogene 23:5203–5214PubMedCrossRefGoogle Scholar
  33. Saleem M, Kaur S, Kweon MH et al (2005) Lupeol, a fruit and vegetable based triterpene, induces apoptotic death of human pancreatic adenocarcinoma cells via inhibition of Ras signaling pathway. Carcinogenesis 26:1956–1964PubMedCrossRefGoogle Scholar
  34. Sato H, Takino T, Miyamori H (2005) Roles of membrane-type matrix metalloproteinase-1 in tumor invasion and metastasis. Cancer Sci 96:212–217PubMedCrossRefGoogle Scholar
  35. Siddique HR, Saleem M (2011) Beneficial health effects of lupeol triterpene: a review of preclinical studies. Life Sci 88:285–293PubMedCrossRefGoogle Scholar
  36. Sina A, Proulx-Bonneau S, Roy A et al (2010) The lectin concanavalin-A signals MT1-MMP catalytic independent induction of COX-2 through an IKKγ/NF-κB-dependent pathway. J Cell Commun Signal 4:31–38PubMedCrossRefGoogle Scholar
  37. Sounni NE, Noel A (2005) Membrane type-matrix metalloproteinases and tumor progression. Biochimie 87:329–342PubMedCrossRefGoogle Scholar
  38. Sudhahar V, Kumar SA, Varalakshmi P (2006) Role of lupeol and lupeol linoleate on lipemic-oxidative stress in experimental hypercholesterolemia. Life Sci 78:1329–1335PubMedCrossRefGoogle Scholar
  39. Sudhahar V, Kumar SA, Sudharsan PT et al (2007) Protective effect of lupeol and its ester on cardiac abnormalities in experimental hypercholesterolemia. Vasc Pharmacol 46:412–418CrossRefGoogle Scholar
  40. Tahanian E, Peiro S, Annabi B (2011a) Low intracellular ATP levels exacerbate carcinogen-induced inflammatory stress response and inhibit in vitro tubulogenesis in human brain endothelial cells. J Inflamm Res 4:1–10PubMedGoogle Scholar
  41. Tahanian E, Sanchez LA, Shiao TC et al (2011b) Flavonoids targeting of IκB phosphorylation abrogates carcinogen-induced MMP-9 and COX-2 expression in human brain endothelial cells. Drug Des Dev Ther 5:299–309Google Scholar
  42. Takino T, Miyamori H, Watanabe Y et al (2004) Membrane type 1 matrix metalloproteinase regulates collagen-dependent mitogen-activated protein/extracellular signal-related kinase activation and cell migration. Cancer Res 64:1044–1049PubMedCrossRefGoogle Scholar
  43. Tarapore RS, Siddiqui IA, Saleem M et al (2010) Specific targeting of Wnt/beta-catenin signaling in human melanoma cells by a dietary triterpene lupeol. Carcinogenesis 31:1844–1853PubMedCrossRefGoogle Scholar
  44. Wang X, Baek SJ, Eling T (2011) COX inhibitors directly alter gene expression: role in cancer prevention? Cancer Metastasis Rev 30:641–657PubMedCrossRefGoogle Scholar
  45. Wick W, Wick A, Schulz JB et al (2002) Prevention of irradiation-induced glioma cell invasion by temozolomide involves caspase 3 activity and cleavage of focal adhesion kinase. Cancer Res 62:1915–1919PubMedGoogle Scholar
  46. Wild-Bode C, Weller M, Rimner A et al (2001) Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61:2744–2750PubMedGoogle Scholar
  47. Yamashita K, Lu H, Lu J et al (2002) Effect of three triterpenoids, lupeol, betulin, and betulinic acid on the stimulus-induced superoxide generation and tyrosyl phosphorylation of proteins in human neutrophils. Clin Chim Acta 325:91–96PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Borhane Annabi
    • 1
  • Eric Vaillancourt-Jean
    • 1
  • Richard Béliveau
    • 2
  1. 1.Laboratoire d’Oncologie Moléculaire, Centre de Recherche BioMEDUniversité du Québec à MontréalQuebecCanada
  2. 2.Laboratoire de Médecine Moléculaire, Centre de Recherche BioMEDUniversité du Québec à MontréalMontrealCanada

Personalised recommendations