, Volume 20, Issue 3, pp 103–107 | Cite as

Inflammation in neurological and psychiatric diseases

  • Parto S. Khansari
  • Beata Sperlagh
Inflammation in acute and chronic neurological and psychiatric diseases


In recent years, compelling evidence suggests that inflammation plays a critical role in the pathology of a vast number of neurological diseases such as stroke, Parkinson’s disease, Alzheimer’s disease and amyotrophic lateral sclerosis as well as neuropsychiatric diseases such as major depression and schizophrenia. Despite emerging evidence in human and animal models alike, modulating inflammatory responses have yet to be proven as an effective treatment to prevent or delay the progression of these diseases. The primary focus of this special edition is to highlight some of our current findings on the complexities of targeting neuroinflammation as a novel therapy, and its role in neurological and psychiatric disorders.


Neuroinflammation Psychiatric diseases Stroke Alzheimer’s disease Parkinson’s disease Major depression Schizophrenia Acute neurological diseases Chronic neurological diseases Astrocytes Microglia Pro-inflammatory cytokines NSAIDs 


  1. Akhondzadeh S, Tabatabaee M, Amini H, Ahmadi Abhari SA, Abbasi SH, Behnam B et al (2007) Celecoxib as adjunctive therapy in schizophrenia: a double-blind, randomized and placebo-controlled trial. Schizophr Res 90:179–185PubMedCrossRefGoogle Scholar
  2. Aktas O, Ullrich O, Infante-Duarte C, Nitsch R, Zipp F (2007) Neuronal damage in brain inflammation. Arch Neurol 64(2):185–189PubMedCrossRefGoogle Scholar
  3. Allan SM, Rothwell NJ (2003) Inflammation in central nervous system injury. Philos Trans R Soc Lond B Biol Sci 358(1438):1669–1677PubMedCrossRefGoogle Scholar
  4. Brown AS, Begg MD, Gravenstein S, Schaefer CA, Wyatt RJ, Bresnahan M, Babulas VP, Susser ES (2004) Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatr 61:774–780PubMedCrossRefGoogle Scholar
  5. Buka SL, Tsuang MT, Torrey EF, Klebanoff MA, Bernstein D, Yolken RH (2001) Maternal infections and subsequent psychosis among offspring. Arch Gen Psychiatry 58(11):1032–1037PubMedCrossRefGoogle Scholar
  6. Capuron L, Fornwalt FB, Knight BT, Harvey PD, Ninan PT, Miller AH (2009) Does cytokine-induced depression differ from idiopathic major depression in medically healthy individuals? J Affect Disord 119(1–3):181–185PubMedCrossRefGoogle Scholar
  7. Catena-Dell’Osso M, Bellantuono C, Consoli G, Baroni S, Rotella F, Marazziti D (2011) Inflammatory and neurodegenerative pathways in depression: a new avenue for antidepressant development? Curr Med Chem 18(2):245–255PubMedCrossRefGoogle Scholar
  8. Chakraborty S, Kaushik DK, Gupta M, Basu A (2010) Inflammasome signaling at the heart of central nervous system pathology. J Neurosci Res 88(8):1615–1631PubMedGoogle Scholar
  9. Creed F, Dickens C (2007) Depression in the medically ill. In: Steptoe A (ed) Depression and physical illness. Cambridge University Press, Cambridge, pp 3–18Google Scholar
  10. Członkowska A, Kurkowska-Jastrzębska I (2011) Inflammation and gliosis in neurological diseases—clinical implications. J Neuroimmunol 231(1–2):78–85PubMedCrossRefGoogle Scholar
  11. Dantzer R, Kelley KW (2007) Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun 21:153–160PubMedCrossRefGoogle Scholar
  12. Dhabhar FS, Burke HM, Epel ES, Mellon SH, Rosser R, Reus VI, Wolkowitz OM (2009) Low serum IL-10 concentrations and loss of regulatory association between IL-6 and IL-10 in adults with major depression. Psychiatr Res 43(11):962–969CrossRefGoogle Scholar
  13. Dickens C, McGowan L, Percival C, Tomenson B, Cotter L, Heagerty A, Creed F (2007) Depression is a risk factor for mortality after myocardial infarction: fact or artifact? J Am Coll Cardiol 49(18):1834–1840PubMedCrossRefGoogle Scholar
  14. Dinan T (2008) Inflammatory markers in depression. Curr Opin Psychiatr 22:32–36CrossRefGoogle Scholar
  15. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL (2010) A meta analysis of cytokines in major depression. Biol Psychiatry 67(5):446–57Google Scholar
  16. Downes CE, Crack PJ (2010) Neural injury following stroke: are Toll-like receptors the link between the immune system and the CNS? Br J Pharmacol 160(8):1872–1888PubMedGoogle Scholar
  17. Dunn AJ (2008) The cytokines and depression hypothesis: an update. Neuroimmune Biol 6:485–506CrossRefGoogle Scholar
  18. Emerich DF, Dean RL 3rd, Bartus RT (2002) The role of leukocytes following cerebral ischemia: pathogenic variable or bystander reaction to emerging infarct? Exp Neurol 173(1):168–181PubMedCrossRefGoogle Scholar
  19. Ferretti MT, Cuello AC (2011) Does a pro-inflammatory process precede Alzheimer’s disease and mild cognitive impairment? Curr Alzheimer Res 8(2):164–174PubMedGoogle Scholar
  20. Fuller S, Steele M, Münch G (2010) Activated astroglia during chronic inflammation in Alzheimer’s disease—do they neglect their neurosupportive roles? Mutat Res 690(1–2):40–49PubMedGoogle Scholar
  21. Gattaz WF, Abrahao AL, Foccaccia R (2004) Childhood meningitis, brain maturation and the risk of schizophrenia. Eur Arch Psychiatry Clin Neurosci 254:23–26PubMedCrossRefGoogle Scholar
  22. Glassman AH, Miller GE (2007) Where there is depression, there is inflammation… sometimes! Biol Psychiatry 62:280–281PubMedCrossRefGoogle Scholar
  23. Goshen I, Kreisel T, Ben-Menachem-Zidon O, Licht T, Weidenfeld J, Ben-Hur T, Yirmiya R (2008) Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry 13(7):717–728PubMedCrossRefGoogle Scholar
  24. Griffiths M, Neal JW, Gasque P (2007) Innate immunity and protective neuroinflammation: new emphasis on the role of neuroimmune regulatory proteins. Int Rev Neurobiol 82:29–55PubMedCrossRefGoogle Scholar
  25. Hanson DR, Gottesman II (2005) Theories of schizophrenia: a genetic-inflammatory-vascular synthesis. BMC Med Genet 6:7PubMedCrossRefGoogle Scholar
  26. Heneka MT (2006) Inflammation in Alzheimer’s disease. J Clin Neurosci Res 6:247–260CrossRefGoogle Scholar
  27. Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8(4):382–397PubMedCrossRefGoogle Scholar
  28. Howren MB, Lamkin DM, Suls J (2009) Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 71:171–186PubMedCrossRefGoogle Scholar
  29. Huang Y, Henry CJ, Dantzer R, Johnson RW, Godbout JP (2008) Exaggerated sickness behavior and brain proinflammatory cytokine expression in aged mice in response to intracerebroventricular lipopolysaccharide. Neurobiol Aging 29(11):1744–1753PubMedCrossRefGoogle Scholar
  30. Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17(7):796–808PubMedCrossRefGoogle Scholar
  31. Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87(5):779–789Google Scholar
  32. Keeley P, Creed F, Tomenson B, Todd C, Borglin G, Dickens C (2008) Psychosocial predictors of health-related quality of life and health service utilisation in people with chronic low back pain. Pain 135(1–2):142–150PubMedCrossRefGoogle Scholar
  33. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553PubMedCrossRefGoogle Scholar
  34. Khandelwal PJ, Herman AM, Moussa CE (2011) Inflammation in the early stages of neurodegenerative pathology. J Neuroimmunol 238(1–2):1–11PubMedCrossRefGoogle Scholar
  35. Kim K, Lee SG, Kegelman TP, Su ZZ, Das SK, Dash R, Dasgupta S, Barral PM, Hedvat M, Diaz P, Reed JC, Stebbins JL, Pellecchia M, Sarkar D, Fisher PB (2011) Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol 226(10):2484–2493PubMedCrossRefGoogle Scholar
  36. Körschenhausen DA, Hampel HJ, Ackenheil M, Penning R, Müller N (1996) Fibrin degradation products in post mortem brain tissue of schizophrenics: a possible marker for underlying inflammatory processes. Schizophr Res 19(2–3):103–109PubMedCrossRefGoogle Scholar
  37. Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147(Suppl 1):S232–S240PubMedGoogle Scholar
  38. Machado A, Herrera AJ, Venero JL, Santiago M, De Pablos RM, Villarán RF, Espinosa-Oliva AM, Argüelles S, Sarmiento M, Delgado-Cortés MJ, Mauriño R, Cano J (2011) Peripheral inflammation increases the damage in animal models of nigrostriatal dopaminergic neurodegeneration: possible implication in Parkinson’s disease incidence. Parkinsons Dis 2011:0393769Google Scholar
  39. Markiewicz I, Lukomska B (2006) The role of astrocytes in the physiology and pathology of the central nervous system. Acta Neurobiol Exp (Wars) 66(4):343–358Google Scholar
  40. Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65:732–741PubMedCrossRefGoogle Scholar
  41. Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T (1996) Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett 211(1):13–16PubMedCrossRefGoogle Scholar
  42. Müller N (2010) COX-2 inhibitors as antidepressants and antipsychotics: clinical evidence. Curr Opin Invest Drugs 11:31–42Google Scholar
  43. Müller N, Schwarz MJ (2007) The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry 12:988–1000PubMedCrossRefGoogle Scholar
  44. Müller N, Schwarz MJ (2008) A psychoneuroimmunological perspective to Emil Kraepelins dichotomy. Schizophrenia and major depression as inflammatory CNS disorders. Eur Arch Psychiatry Clin Neurosci 258((Suppl. 2)):97–106PubMedCrossRefGoogle Scholar
  45. Müller N, Ulmschneider M, Scheppach C, Schwarz MJ, Ackenheil M, Möller HJ, Gruber R, Riedel M (2004a) COX-2 inhibition as a treatment approach in schizophrenia: immunological considerations and clinical effects of celecoxib add-on therapy. Eur Arch Psychiatry Clin Neurosci 254(1):14–22PubMedCrossRefGoogle Scholar
  46. Müller N, Riedel M, Dehning S, Spellmann I, Müller-Arends A, Cerovecki A et al (2004b) Is the therapeutic effect of celecoxib in schizophrenia depending from duration of disease? Neuropsychopharmacology 29:176Google Scholar
  47. Müller N, Riedel M, Schwarz MJ, Engel RR (2005) Clinical effects of COX-2 inhibitors on cognition in schizophrenia. Eur Arch Psychiatry Clin Neurosci 255(2):149–151PubMedCrossRefGoogle Scholar
  48. Müller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Müller B, Spellmann I, Hetzel G, Maino K, Kleindienst N, Möller HJ, Arolt V, Riedel M (2006) The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry 11(7):680–684PubMedCrossRefGoogle Scholar
  49. Musselman DL, Lawson DH, Gumnick JF, Manatunga AK, Penna S, Goodkin RS, Greiner K, Nemeroff CB, Miller AH (2001) Paroxetine for the prevention of depression induced by high-dose interferon alfa. N Engl J Med 344(13):961–966PubMedCrossRefGoogle Scholar
  50. Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Cytokines in Parkinson’s disease. J Neural Transm Suppl 58:143–151PubMedGoogle Scholar
  51. Palin K, Bluthé RM, McCusker RH, Moos F, Dantzer R, Kelley KW (2007) TNFalpha-induced sickness behavior in mice with functional 55 kD TNF receptors is blocked by central IGF-I. J Neuroimmunol 187(1–2):55–60PubMedCrossRefGoogle Scholar
  52. Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6(4):193–201PubMedCrossRefGoogle Scholar
  53. Raedler TJ (2011) Inflammatory mechanisms in major depressive disorder. Curr Opin Psychiatry 24:519–525PubMedGoogle Scholar
  54. Raison CL, Capuron L, Miller AH (2006) Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 27:24–31PubMedCrossRefGoogle Scholar
  55. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145PubMedCrossRefGoogle Scholar
  56. Rook GA, Lowry CA (2008) The hygiene hypothesis and psychiatric disorders. Trends Immunol 29:150–158PubMedCrossRefGoogle Scholar
  57. Sharpley CF, Agnew LL (2011) Cytokines and depression: findings, issues, and treatment implications. Rev Neurosci 22:295–302PubMedCrossRefGoogle Scholar
  58. Skaper SD (2007) The brain as a target for inflammatory processes and neuroprotective strategies. Ann N Y Acad Sci 1122:23–34PubMedCrossRefGoogle Scholar
  59. Smith JA, Das A, Ray SK, Banik NL (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87:10–20PubMedCrossRefGoogle Scholar
  60. Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 11(5):400–407PubMedCrossRefGoogle Scholar
  61. Stone EA, Lin Y, Quartermain D (2008) A final common pathway for depression? Progress toward a general conceptual framework. Neurosci Biobehav Rev 32:508–524PubMedCrossRefGoogle Scholar
  62. Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 30:14CrossRefGoogle Scholar
  63. Wang DD, Bordey A (2008) The astrocyte odyssey. Prog Neurobiol 86(4):342–367PubMedGoogle Scholar
  64. Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184(1–2):53–68PubMedCrossRefGoogle Scholar
  65. Warner-Schmidt JL, Vanover KE, Chen EY, Marshall JJ, Greengard P (2011) Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans. Proc Natl Acad Sci USA 108(22):9262–9267PubMedCrossRefGoogle Scholar
  66. Wee YV (2010) Inflammation in neurological disorders: a help or a hindrance? Neuroscientist 16(4):408–420CrossRefGoogle Scholar
  67. WHO (2001) Cross-national comparisons of the prevalences and correlates of mental disorders, WHO international consortium in psychiatric epidemiology. World Health Organ 78:413–426Google Scholar
  68. Wood PL (1995) Microglia as a unique cellular target in the treatment of stroke: potential neurotoxic mediators produced by activated microglia. Neurol Res 17(4):242–248PubMedGoogle Scholar
  69. Yang Y, Rosenberg GA (2011) Blood–brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 42(11):3323–3328PubMedCrossRefGoogle Scholar
  70. Zhao Y, Rempe DA (2010) Targeting astrocytes for stroke therapy. Neurotherapeutics 7(4):439–451PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.California Northstate University College of PharmacyRancho CordovaUSA
  2. 2.Laboratory of Molecular Pharmacology, Institute of Experimental MedicineHungarian Academy of Sciences (IEM HAS)BudapestHungary

Personalised recommendations