Inflammopharmacology

, Volume 20, Issue 3, pp 127–150 | Cite as

New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates—Nrf2 activators and GSK-3 inhibitors

  • Michael Maes
  • Zdenĕk Fišar
  • Miguel Medina
  • Giovanni Scapagnini
  • Gabriel Nowak
  • Michael Berk
Inflammation in Acute and Chronic Neurological and Psychiatric Diseases

Abstract

This paper reviews new drug targets in the treatment of depression and new drug candidates to treat depression. Depression is characterized by aberrations in six intertwined pathways: (1) inflammatory pathways as indicated by increased levels of proinflammatory cytokines, e.g. interleukin-1 (IL-1), IL-6, and tumour necrosis factor α. (2) Activation of cell-mediated immune pathways as indicated by an increased production of interferon γ and neopterin. (3) Increased reactive oxygen and nitrogen species and damage by oxidative and nitrosative stress (O&NS), including lipid peroxidation, damage to DNA, proteins and mitochondria. (4) Lowered levels of key antioxidants, such as coenzyme Q10, zinc, vitamin E, glutathione, and glutathione peroxidase. (5) Damage to mitochondria and mitochondrial DNA and reduced activity of respiratory chain enzymes and adenosine triphosphate production. (6) Neuroprogression, which is the progressive process of neurodegeneration, apoptosis, and reduced neurogenesis and neuronal plasticity, phenomena that are probably caused by inflammation and O&NS. Antidepressants tend to normalize the above six pathways. Targeting these pathways has the potential to yield antidepressant effects, e.g. using cytokine antagonists, minocycline, Cox-2 inhibitors, statins, acetylsalicylic acid, ketamine, ω3 poly-unsaturated fatty acids, antioxidants, and neurotrophic factors. These six pathways offer new, pathophysiologically guided drug targets suggesting that novel therapies could be developed that target these six pathways simultaneously. Both nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activators and glycogen synthase kinase-3 (GSK-3) inhibitors target the six above-mentioned pathways. GSK-3 inhibitors have antidepressant effects in animal models of depression. Nrf2 activators and GSK-3 inhibitors have the potential to be advanced to phase-2 clinical trials to examine whether they augment the efficacy of antidepressants or are useful as monotherapy.

Keywords

Depression Antidepressants Inflammation Cytokines Serotonin Oxidative and nitrosative stress Neuroprogression 

References

  1. Abdel-Razaq W, Kendall DA, Bates TE (2011) The effects of antidepressants on mitochondrial function in a model cell system and isolated mitochondria. Neurochem Res 36(2):327–338PubMedCrossRefGoogle Scholar
  2. Albrecht P, Lewerenz J, Dittmer S, Noack R, Maher P, Methner A (2010) Mechanisms of oxidative glutamate toxicity: the glutamate/cystine antiporter system xc- as a neuroprotective drug target. CNS Neurol Disord Drug Targets 9:373–382PubMedGoogle Scholar
  3. Ames BN (2003) Delaying the mitochondrial decay of aging-a metabolic tune-up. Alzheimer Dis Assoc Disord 17(Suppl 2):S54–S57PubMedCrossRefGoogle Scholar
  4. Amminger GP, Schäfer MR, Klier CM, Slavik J-M, Holzer I, Holub M, Goldstone S, Whitford TJ, Berk M (2011) Decreased nervonic acid levels in erythrocyte membranes predict psychosis in help-seeking ultra-high risk individuals. Mol Psychiatry (in press)Google Scholar
  5. Anisman H, Merali Z (1999) Anhedonic and anxiogenic effects of cytokine exposure. Adv Exp Med Biol 461:199–233PubMedCrossRefGoogle Scholar
  6. Anttila S, Huuhka K, Huuhka M, Rontu R, Hurme M, Leinonen E, Lehtimaki T (2007) Interaction between 5-HT1A and BDNF genotypes increases the risk of treatment-resistant depression. J Neural Transm 114(8):1065–1068PubMedCrossRefGoogle Scholar
  7. Arakawa H, Blandino P Jr, Deak T (2009) Central infusion of interleukin-1 receptor antagonist blocks the reduction in social behavior produced by prior stressor exposure. Physiol Behav 98(1–2):139–146PubMedCrossRefGoogle Scholar
  8. Atlante A, Calissano P, Bobba A, Giannattasio S, Marra E, Passarella S (2001) Glutamate neurotoxicity, oxidative stress and mitochondria. FEBS Lett 497(1):1–5PubMedCrossRefGoogle Scholar
  9. Bachmann RF, Wang Y, Yuan P, Zhou R, Li X, Alesci S, Du J, Manji HK (2009) Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage. Int J Neuropsychopharmacol 12(6):805–822PubMedCrossRefGoogle Scholar
  10. Baker DA, Xi ZX, Shen H et al (2002) The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 22:9134–9141PubMedGoogle Scholar
  11. Baker DA, McFarland K, Lake RW, Shen H, Tang XC, Toda S, Kalivas PW (2003) Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nat Neurosci 6:743–749PubMedCrossRefGoogle Scholar
  12. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495PubMedCrossRefGoogle Scholar
  13. Bao Z, Lim S, Liao W, Lin Y, Thiemermann C, Leung BP et al (2007) Glycogen synthase kinase-3beta inhibition attenuates asthma in mice. Am J Respir Crit Care Med 176:431–438PubMedCrossRefGoogle Scholar
  14. Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, Cotter D (2006) Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: evidence for disease-associated changes. Proteomics 6(11):3414–3425PubMedCrossRefGoogle Scholar
  15. Beaulieu JM, Zhang X, Rodriguiz RM, Sotnikova TD, Cools MJ, Wetsel WC, Gainetdinov RR, Caron MG (2008) Role of GSK3beta in behavioural abnormalities induced by serotonin deficiency. Proc Natl Acad Sci USA 105:1333–1338PubMedCrossRefGoogle Scholar
  16. Beckman KB, Ames BN (1996) Detection and quantification of oxidative adducts of mitochondrial DNA. Methods Enzymol 264:442–453PubMedCrossRefGoogle Scholar
  17. Ben-Shachar D, Karry R (2008) Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS One 3(11):e3676PubMedCrossRefGoogle Scholar
  18. Berk M, Wadee AA, Kuschke RH, O’Neill-Kerr A (1997) Acute phase proteins in major depression. J Psychosom Res 43(5):529–534PubMedCrossRefGoogle Scholar
  19. Berk M, Mitchell VS, Plein H (1998) The platelet intracellular calcium response to serotonin in subsyndromal depression. Int Clin Psychopharmacol 13(3):107–110PubMedCrossRefGoogle Scholar
  20. Berk M, Plein H, Ferreira D (2001) Platelet glutamate receptor supersensitivity in major depressive disorder. Clin Neuropharmacol 24(3):129–132PubMedCrossRefGoogle Scholar
  21. Berk M, Copolov DL, Dean O, Lu K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Bush AI (2008) N-Acetyl cysteine for depressive symptoms in bipolar disorder—a double-blind randomized placebo-controlled trial. Biol Psychiatry 64(6):468–475PubMedCrossRefGoogle Scholar
  22. Berk M, Dean O, Cotton SM, Gama CS, Kapczinski F, Fernandes BS, Kohlmann K, Jeavons S, Hewitt K, Allwang C, Cobb H, Bush AI, Schapkaitz I, Dodd S, Malhi GS (2011a) The efficacy of N-acetylcysteine as an adjunctive treatment in bipolar depression: an open label trial. J Affect Disord 135(1–3):389–394PubMedCrossRefGoogle Scholar
  23. Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M, Yücel M, Gama CS, Dodd S, Dean B, Magalhães PV, Amminger P, McGorry P, Malhi GS (2011b) Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 35(3):804–817PubMedCrossRefGoogle Scholar
  24. Beurel E (2011) Regulation by glycogen synthase kinase-3 of inflammation and T cells in CNS diseases. Front Mol Neurosci 4:18PubMedCrossRefGoogle Scholar
  25. Beurel E, Jope RS (2008) Differential regulation of STAT family members by glycogen synthase kinase-3. J Biol Chem 283:21934–21944PubMedCrossRefGoogle Scholar
  26. Beurel E, Jope RS (2010) Glycogen synthase kinase-3 regulates inflammatory tolerance in astrocytes. Neuroscience 169(3):1063–1070PubMedCrossRefGoogle Scholar
  27. Bilici M, Efe H, Köroğlu MA, Uydu HA, Bekaroğlu M, Değer O (2001) Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affect Disord 64(1):43–51PubMedCrossRefGoogle Scholar
  28. Bjarnason I, Takeuchi K (2009) Intestinal permeability in the pathogenesis of NSAID-induced enteropathy. J Gastroenterol 44(Suppl 19):23–29PubMedCrossRefGoogle Scholar
  29. Bonaccorso S, Marino V, Puzella A, Pasquini M, Biondi M, Artini M, Almerighi C, Verkerk R, Meltzer H, Maes M (2002) Increased depressive ratings in patients with hepatitis C receiving interferon-alpha-based immunotherapy are related to interferon-alpha-induced changes in the serotonergic system. J Clin Psychopharmacol 22(1):86–90PubMedCrossRefGoogle Scholar
  30. Boyle JJ, Johns M, Lo J, Chiodini A, Ambrose N, Evans PC, Mason JC, Haskard DO (2011) Heme induces heme oxygenase 1 via Nrf2: role in the homeostatic macrophage response to intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 31(11):2685–2691PubMedCrossRefGoogle Scholar
  31. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435(2):297–312PubMedCrossRefGoogle Scholar
  32. Brown ES, Woolston D, Frol A, Bobadilla L, Khan DA, Hanczyc M, Rush AJ, Fleckenstein J, Babcock E, Cullum CM (2004) Hippocampal volume, spectroscopy, cognition, and mood in patients receiving corticosteroid therapy. Biol Psychiatry 55(5):538–545PubMedCrossRefGoogle Scholar
  33. Brustolim D, Ribeiro-dos-Santos R, Kast RE, Altschuler EL, Soares MB (2006) A new chapter opens in anti-inflammatory treatments: the antidepressant bupropion lowers production of tumor necrosis factor-alpha and interferon-gamma in mice. Int Immunopharmacol 6(6):903–907PubMedCrossRefGoogle Scholar
  34. Búrigo M, Roza CA, Bassani C, Fagundes DA, Rezin GT, Feier G, Dal-Pizzol F, Quevedo J, Streck EL (2006) Effect of electroconvulsive shock on mitochondrial respiratory chain in rat brain. Neurochem Res 31(11):1375–1379PubMedCrossRefGoogle Scholar
  35. Butler MG, Dasouki M, Bittel D, Hunter S, Naini A, DiMauro S (2003) Coenzyme Q10 levels in Prader–Willi syndrome: comparison with obese and non-obese subjects. Am J Med Genet A 119A(2):168–171PubMedCrossRefGoogle Scholar
  36. Calkins MJ, Jakel RJ, Johnson DA, Chan K, Kan YW, Johnson JA (2005) Protection from mitochondrial complex II inhibition in vitro and in vivo by Nrf2-mediated transcription. Proc Natl Acad Sci USA 102(1):244–249PubMedCrossRefGoogle Scholar
  37. Campbell S, MacQueen G (2006) An update on regional brain volume differences associated with mood disorders. Curr Opin Psychiatry 19(1):25–33PubMedCrossRefGoogle Scholar
  38. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657PubMedCrossRefGoogle Scholar
  39. Catena-Dell’Osso M, Bellantuono C, Consoli G, Baroni S, Rotella F, Marazziti D (2011) Inflammatory and neurodegenerative pathways in depression: a new avenue for antidepressant development? Curr Med Chem 18(2):245–255PubMedCrossRefGoogle Scholar
  40. Chen G, Huang LD, Jiang YM, Manji HK (1999) The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. J Neurochem 72(3):1327–1330PubMedCrossRefGoogle Scholar
  41. Chen K, Gunter K, Maines MD (2000) Neurons overexpressing heme oxygenase-1 resist oxidative stress-mediated cell death. J Neurochem 75:304–312PubMedCrossRefGoogle Scholar
  42. Chen G, Shi J, Hu Z et al (2008) Inhibitory effect on cerebral inflammatory response following traumatic brain injury in rats: a potential neuroprotective mechanism of N-acetylcysteine. Mediators Inflamm 2008:716458PubMedCrossRefGoogle Scholar
  43. Chen Y, Jiang T, Chen P, Ouyang J, Xu G, Zeng Z, Sun Y (2011) Emerging tendency towards autoimmune process in major depressive patients: a novel insight from Th17 cells. Psychiatry Res 188(2):224–230PubMedCrossRefGoogle Scholar
  44. Connor TJ, Song C, Leonard BE, Merali Z, Anisman H (1998) An assessment of the effects of central interleukin-1beta, -2, -6, and tumor necrosis factor-alpha administration on some behavioural, neurochemical, endocrine and immune parameters in the rat. Neuroscience 84(3):923–933PubMedCrossRefGoogle Scholar
  45. Correa F, Mallard C, Nilsson M, Sandberg M (2011) Activated microglia decrease histone acetylation and Nrf2-inducible anti-oxidant defence in astrocytes: restoring effects of inhibitors of HDACs, p38 MAPK and GSK3β. Neurobiol Dis 44:142–151PubMedGoogle Scholar
  46. Crane FL (2001) Biochemical functions of coenzyme Q10. J Am Coll Nutr 20(6):591–598PubMedGoogle Scholar
  47. Cumurcu BE, Ozyurt H, Etikan I, Demir S, Karlidag R (2009) Total antioxidant capacity and total oxidant status in patients with major depression: impact of antidepressant treatment. Psychiatry Clin Neurosci 63(5):639–645PubMedCrossRefGoogle Scholar
  48. Cuzzocrea S, Crisafulli C, Mazzon E, Esposito E, Muia C, Abdelrahman M et al (2006a) Inhibition of glycogen synthase kinase-3beta attenuates the development of carrageenan-induced lung injury in mice. Br J Pharmacol 149:687–702PubMedCrossRefGoogle Scholar
  49. Cuzzocrea S, Genovese T, Mazzon E, Crisafulli C, Di Paola R, Muia C et al (2006b) Glycogen synthase kinase-3 beta inhibition reduces secondary damage in experimental spinal cord trauma. J Pharmacol Exp Ther 318:79–89PubMedCrossRefGoogle Scholar
  50. Cuzzocrea S, Mazzon E, Di Paola R, Muia C, Crisafulli C, Dugo L et al (2006c) Glycogen synthase kinase-3beta inhibition attenuates the degree of arthritis caused by type II collagen in the mouse. Clin Immunol 120:57–67PubMedCrossRefGoogle Scholar
  51. Cuzzocrea S, Di Paola R, Mazzon E, Crisafulli C, Genovese T, Muia C et al (2007a) Glycogen synthase kinase 3beta inhibition reduces the development of nonseptic shock induced by zymosan in mice. Shock 27:97–107PubMedCrossRefGoogle Scholar
  52. Cuzzocrea S, Genovese T, Mazzon E, Esposito E, Muia C, Abdelrahman M et al (2007b) Glycogen synthase kinase-3beta inhibition attenuates the development of Bleomycin-induced lung injury. Int J Immunopathol Pharmacol 20:619–630PubMedGoogle Scholar
  53. Cuzzocrea S, Mazzon E, Esposito E, Muia C, Abdelrahman M, Di Paola R et al (2007c) Glycogen synthase kinase-3beta inhibition attenuates the development of ischaemia/reperfusion injury of the gut. Intense Care Med 33:880–893CrossRefGoogle Scholar
  54. Daley-Yates PT, Powell AP, Smith LL (1988) Pulmonary indoleamine 2,3-dioxygenase activity and its significance in the response of rats, mice, and rabbits to oxidative stress. Toxicol Appl Pharmacol 96(2):222–232PubMedCrossRefGoogle Scholar
  55. Dang H, Chen Y, Liu X, Wang Q, Wang L, Jia W, Wang Y (2009) Antidepressant effects of ginseng total saponins in the forced swimming test and chronic mild stress models of depression. Prog Neuropsychopharmacol Biol Psychiatry 33(8):1417–1424PubMedCrossRefGoogle Scholar
  56. De Sarno P, Axtell RC, Raman C, Roth KA, Alessi DR, Jope RS (2008) Lithium reverts and ameliorates experimental autoimmune encephalomyelitis. J Immunol 181:338–345PubMedGoogle Scholar
  57. de Vries HE, Witte M, Hondius D, Rozemuller AJ, Drukarch B, Hoozemans J, van Horssen J (2008) Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Radic Biol Med 45(10):1375–1383PubMedCrossRefGoogle Scholar
  58. Dean O, Giorlando F, Berk M (2011) N-Acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. J Psychiatry Neurosci 36(2):78–86PubMedGoogle Scholar
  59. Dimopoulos N, Piperi C, Psarra V, Lea RW, Kalofoutis A (2008) Increased plasma levels of 8-iso-PGF2alpha and IL-6 in an elderly population with depression. Psychiatry Res 161(1):59–66PubMedCrossRefGoogle Scholar
  60. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67(5):446–457PubMedCrossRefGoogle Scholar
  61. Dragicevic N, Bradshaw PC, Mamcarz M, Lin X, Wang L, Cao C, Arendash GW (2011) Long-term electromagnetic field treatment enhances brain mitochondrial function of both Alzheimer’s transgenic mice and normal mice: a mechanism for electromagnetic field-induced cognitive benefit? Neuroscience 185:135–149PubMedCrossRefGoogle Scholar
  62. Dubovsky S (2010) Depression is an inflammatory disease. J Watch Psychiatry 67:446Google Scholar
  63. Dugo L, Abdelrahman M, Murch O, Mazzon E, Cuzzocrea S, Thiemermann C (2006) Glycogen synthase kinase-3beta inhibitors protect against the organ injury and dysfunction caused by hemorrhage and resuscitation. Shock 25:485–491PubMedCrossRefGoogle Scholar
  64. Duman RS (2004) Depression: a case of neuronal life and death? Biol Psychiatry 56(3):140–145PubMedCrossRefGoogle Scholar
  65. Dutton PL, Ohnishi T, Darrouzet E, Leonard MA, Sharp RE, Cibney BR, Daldal F, Moser CC (2000) Coenzyme Q oxidation reduction reactions in mitochondrial electron transport. In: Kagan VE, Quinn PJ (eds) Coenzyme Q: molecular mechanisms in health and disease. CRC Press, Boca Raton, pp 65–82Google Scholar
  66. Dwivedi Y, Rizavi HS, Roberts RC, Conley RC, Tamminga CA, Pandey GN (2011) Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects. J Neurochem 77(3):916–928CrossRefGoogle Scholar
  67. Edwards R, Peet M, Shay J, Horrobin D (1998) Omega-3 polyunsaturated fatty acid levels in the diet and in red blood cell membranes of depressed patients. J Affect Disord 48(2–3):149–155PubMedCrossRefGoogle Scholar
  68. Eren I, Naziroglu M, Demirdas A (2007a) Protective effects of lamotrigine, aripiprazole and escitalopram on depression-induced oxidative stress in rat brain. Neurochem Res 32(7):1188–1195PubMedCrossRefGoogle Scholar
  69. Eren I, Naziroglu M, Demirdas A, Celik O, Uguz AC, Altunbasak A, Ozmen I, Uz E (2007b) Venlafaxine modulates depression-induced oxidative stress in brain and medulla of rat. Neurochem Res 32(3):497–505PubMedCrossRefGoogle Scholar
  70. Fattal O, Budur K, Vaughan AJ, Franco K (2006) Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics 47(1):1–7PubMedCrossRefGoogle Scholar
  71. Fišar Z, Hroudová J (2010) Intracellular signalling pathways and mood disorders. Folia Biol (Praha) 56(4):135–148Google Scholar
  72. Forlenza MJ, Miller GE (2006) Increased serum levels of 8-hydroxy-2′-deoxyguanosine in clinical depression. Psychosom Med 68(1):1–7PubMedCrossRefGoogle Scholar
  73. Fuchs E, Czeh B, Kole MH, Michaelis T, Lucassen PJ (2004) Alterations of neuroplasticity in depression: the hippocampus and beyond. Eur Neuropsychopharmacol 14(Suppl 5):S481–S490PubMedCrossRefGoogle Scholar
  74. Gałecki P, Szemraj J, Bieńkiewicz M, Zboralski K, Gałecka E (2009a) Oxidative stress parameters after combined fluoxetine and acetylsalicylic acid therapy in depressive patients. Hum Psychopharmacol 24:277–286PubMedCrossRefGoogle Scholar
  75. Gałecki P, Szemraj J, Bieńkiewicz M, Florkowski A, Gałecka E (2009b) Lipid peroxidation and antioxidant protection in patients during acute depressive episodes and in remission after fluoxetine treatment. Pharmacol Rep 61(3):436–447PubMedGoogle Scholar
  76. Gao HK, Yin Z, Zhou N, Feng XY, Gao F, Wang HC (2008) Glycogen synthase kinase-3 inhibition protects the heart from acute ischemia–reperfusion injury via inhibition of inflammation and apoptosis. J Cardiovasc Pharmacol 52:286–292PubMedCrossRefGoogle Scholar
  77. Garcia LS, Comim CM, Valvassori SS, Réus GZ, Barbosa LM, Andreazza AC, Stertz L, Fries GR, Gavioli EC, Kapczinski F, Quevedo J (2008) Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 32(1):140–144PubMedCrossRefGoogle Scholar
  78. Gardner A, Boles RG (2008a) Symptoms of somatization as a rapid screening tool for mitochondrial dysfunction in depression. Biopsychosoc Med 2:7PubMedCrossRefGoogle Scholar
  79. Gardner A, Boles RG (2008b) Mitochondrial energy depletion in depression with somatization. Psychother Psychosom 77(2):127–129PubMedCrossRefGoogle Scholar
  80. Gardner A, Boles RG (2011) Beyond the serotonin hypothesis: mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders. Prog. Neuro Psychopharmacol Biol Psychiatry 35(3):730–743CrossRefGoogle Scholar
  81. Gardner A, Johansson A, Wibom R, Nennesmo I, von Döbeln U, Hagenfeldt L, Hällström T (2003) Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J Affect Disord 76(1–3):55–68PubMedCrossRefGoogle Scholar
  82. Gawryluk JW, Wang JF, Andreazza AC, Shao L, Yatham LN, Young LT (2011) Prefrontal cortex glutathione S-transferase levels in patients with bipolar disorder, major depression and schizophrenia. Int J Neuropsychopharmacol 14(8):1069–1074PubMedCrossRefGoogle Scholar
  83. Gere-Paszti E, Jakus J (2009) The effect of N-acetylcysteine on amphetamine-mediated dopamine release in rat brain striatal slices by ion-pair reversed-phase high performance liquid chromatography. Biomed Chromatogr 23:658–664PubMedCrossRefGoogle Scholar
  84. Gould TD, Manji HK (2005) Glycogen synthase kinase-3: a putative molecular target for lithium mimetic drugs. Neuropsychopharmacology 30:1223–1237PubMedGoogle Scholar
  85. Gould TD and Manji HK (2006) Glycogen synthase kinase 3: a target for novel mood disorder treatments. In: Wang B (ed) Glycogen synthase kinase 3 (GSK-3) and its inhibitors-drug discovery and development, Chap 7. Wiley Series in Drug Discovery and Development, New Jersey, pp 125–154Google Scholar
  86. Greco T, Fiskum G (2010) Neuroprotection through stimulation of mitochondrial antioxidant protein expression. J Alzheimers Dis 20(Suppl 2):S427–S437PubMedGoogle Scholar
  87. Guha M, Mackman N (2002) The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J Biol Chem 277:32124–32132PubMedCrossRefGoogle Scholar
  88. Gutiérrez-Pérez A, Cortés-Rojo C, Noriega-Cisneros R, Calderón-Cortés E, Manzo-Avalos S, Clemente-Guerrero M, Godinez-Hernández D, Boldogh I, Saavedra-Molina A (2011) Protective effects of resveratrol on calcium-induced oxidative stress in rat heart mitochondria. J Bioenerg Biomembr 43(2):101–107PubMedCrossRefGoogle Scholar
  89. Halestrap AP, McStay GP, Clarke SJ (2002) The permeability transition pore complex: another view. Biochimie 84(2–3):153–166PubMedCrossRefGoogle Scholar
  90. Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc Res 61(3):372–385PubMedCrossRefGoogle Scholar
  91. Hannestad J, Dellagioia N, Bloch M (2011) The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology 36(12):2452–2459PubMedCrossRefGoogle Scholar
  92. Harvey CJ, Thimmulappa RK, Singh A, Blake DJ, Ling G, Wakabayashi N, Fujii J, Myers A, Biswal S (2009) Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic Biol Med 46(4):443–445PubMedCrossRefGoogle Scholar
  93. Hashioka S, Klegeris A, Monji A, Kato T, Sawada M, McGeer PL, Kanba S (2007) Antidepressants inhibit interferon-gamma-induced microglial production of IL-6 and nitric oxide. Exp Neurol 206(1):33–42PubMedCrossRefGoogle Scholar
  94. Herken H, Gurel A, Selek S, Armutcu F, Ozen ME, Bulut M, Kap O, Yumru M, Savas HA, Akyol O (2007) Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: impact of antidepressant treatment. Arch Med Res 38(2):247–252PubMedCrossRefGoogle Scholar
  95. Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR (2000) Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406:86–90PubMedCrossRefGoogle Scholar
  96. Hroudová J, Fišar Z (2011) Connectivity between mitochondrial functions and psychiatric disorders. Psychiatry Clin Neurosci 65(2):130–141PubMedCrossRefGoogle Scholar
  97. Hu X, Paik PK, Chen J, Yarilina A, Kockeritz L, Lu TT et al (2006) IFN-gamma suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins. Immunity 24:563–574PubMedCrossRefGoogle Scholar
  98. Huang WC, Lin YS, Wang CY, Tsai CC, Tseng HC, Chen CL, Lu PJ, Chen PS, Qian L, Hong JS, Lin CF (2009) Glycogen synthase kinase-3 negatively regulates anti-inflammatory interleukin-10 for lipopolysaccharide-induced iNOS/NO biosynthesis and RANTES production in microglial cells. Immunology 128(1 Suppl):e275–e286PubMedCrossRefGoogle Scholar
  99. Hubbs AF, Benkovic SA, Miller DB, O’Callaghan JP, Battelli L, Schwegler-Berry D, Ma Q (2007) Vacuolar leukoencephalopathy with widespread astrogliosis in mice lacking transcription factor Nrf2. Am J Pathol 170(6):2068–2076PubMedCrossRefGoogle Scholar
  100. Hunter RL, Dragicevic N, Seifert K, Choi DY, Liu M, Kim HC, Cass WA, Sullivan PG, Bing G (2007) Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J Neurochem 100(5):1375–1386PubMedCrossRefGoogle Scholar
  101. Hybertson BM, Gao B, Bose SK, McCord JM (2011) Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Aspects Med 2011 Oct 15 (Epub ahead of print)Google Scholar
  102. Innamorato NG, Rojo AI, García-Yagüe AJ, Yamamoto M, de Ceballos ML, Cuadrado A (2008) The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol 181(1):680–689PubMedGoogle Scholar
  103. Irie M, Miyata M, Kasai H (2005) Depression and possible cancer risk due to oxidative DNA damage. J Psychiatr Res 39(6):553–560PubMedCrossRefGoogle Scholar
  104. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236(2):313–322PubMedCrossRefGoogle Scholar
  105. Ivanov II, Mckenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17 + Thelper cells. Cell 126:1121–1133PubMedCrossRefGoogle Scholar
  106. Jain AK, Jaiswal AK (2007) GSK-3β acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. J Biol Chem 282(22):16502–16510PubMedCrossRefGoogle Scholar
  107. Jeng JY, Lee WH, Tsai YH, Chen CY, Chao SY, Hsieh RH (2009) Functional modulation of mitochondria by eicosapentaenoic acid provides protection against ceramide toxicity to C6 glioma cells. J Agric Food Chem 57(24):11455–11462PubMedCrossRefGoogle Scholar
  108. Jiang Y, Deacon R, Anthony DC, Campbell SJ (2008) Inhibition of peripheral TNF can block the malaise associated with CNS inflammatory diseases. Neurobiol Dis 32(1):125–132PubMedCrossRefGoogle Scholar
  109. Jimerson DC, Post RM, Carman JS, van Kammen DP, Wood JH, Goodwin FK, Bunney WE Jr (1979) CSF calcium: clinical correlates in affective illness and schizophrenia. Biol Psychiatry 14(1):37–51PubMedGoogle Scholar
  110. Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR, Chen PC (2008) The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Ann NY Acad Sci 1147:61–69PubMedCrossRefGoogle Scholar
  111. Jones SP, Teshima Y, Akao M, Marbán E (2003) Simvastatin attenuates oxidant-induced mitochondrial dysfunction in cardiac myocytes. Circ Res 93(8):697–699PubMedCrossRefGoogle Scholar
  112. Jope RS (1999) Anti-bipolar therapy: mechanism of action of lithium. Mol Psychiatry 4(2):117–128PubMedCrossRefGoogle Scholar
  113. Jope RS (2011) Glycogen synthase kinase-3 in the etiology and treatment of mood disorders. Front Mol Neurosci 4:16PubMedCrossRefGoogle Scholar
  114. Jou SH, Chiu NY, Liu CS (2009) Mitochondrial dysfunction and psychiatric disorders. Chang Gung Med J 32(4):370–379PubMedGoogle Scholar
  115. Kahl KG, Kruse N, Faller H, Weiss H, Rieckmann P (2002) Expression of tumor necrosis factor-alpha and interferon-gamma mRNA in blood cells correlates with depression scores during an acute attack in patients with multiple sclerosis. Psychoneuroendocrinology 27(6):671–681PubMedCrossRefGoogle Scholar
  116. Kaidanovich-Beilin O, Milman A, Weizman A, Pick CG, Eldar-Finkelman H (2004) Rapid antidepressive-like activity of specific glycogen synthase kinase-3 inhibitor and its effect on beta-catenin in mouse hippocampus. Biol Psychiatry 55(8):781–784PubMedCrossRefGoogle Scholar
  117. Kanninen K, White AR, Koistinaho J, Malm T (2011) Targeting glycogen synthase kinase-3β for therapeutic benefit against oxidative stress in Alzheimer’s disease: involvement of the Nrf2-ARE pathway. Int J Alzheimers Dis 2011:985085PubMedGoogle Scholar
  118. Karry R, Klein E, Ben Shachar D (2004) Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study. Biol Psychiatry 55:676–684PubMedCrossRefGoogle Scholar
  119. Kaspar JW, Niture SK, Jaiswal AK (2009) Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 47:1304–1309PubMedCrossRefGoogle Scholar
  120. Kato T (2007) Mitochondrial dysfunction as the molecular basis of bipolar disorder: therapeutic implications. CNS Drugs 21(1):1–11PubMedCrossRefGoogle Scholar
  121. Kato T (2008) Role of mitochondrial DNA in calcium signaling abnormality in bipolar disorder. Cell Calcium 44(1):92–102PubMedCrossRefGoogle Scholar
  122. Kato T, Kato N (2000) Mitochondrial dysfunction in bipolar disorder. Bipolar Disord 2(3 Pt 1):180–190PubMedCrossRefGoogle Scholar
  123. Katyare SS, Rajan RR (1995) Effect of long-term in vivo treatment with imipramine on the oxidative energy metabolism in rat brain mitochondria. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 112(3):353–357PubMedCrossRefGoogle Scholar
  124. Khan M, Sekhon B, Jatana M et al (2004) Administration of N-acetylcysteine after focal cerebral ischemia protects brain and reduces inflammation in a rat model of experimental stroke. J Neurosci Res 76:519–527PubMedCrossRefGoogle Scholar
  125. Khanzode SD, Dakhale GN, Khanzode SS, Saoji A, Palasodkar R (2003) Oxidative damage and major depression: the potential antioxidant action of selective serotonin re-uptake inhibitors. Redox Rep 8(6):365–370PubMedCrossRefGoogle Scholar
  126. Kirsch I (2009) Antidepressants and the placebo response. Epidemiol Psychiatr Soc 18(4):318–322Google Scholar
  127. Klein PS, Melton DA (1996) A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 93(16):8455–8459PubMedCrossRefGoogle Scholar
  128. Klementiev B, Novikova T, Novitskaya V, Walmod PS, Dmytriyeva O, Pakkenberg B, Berezin V, Bock E (2007) A neural cell adhesion molecule-derived peptide reduces neuropathological signs and cognitive impairment induced by Abeta25-35. Neuroscience 145(1):209–224PubMedCrossRefGoogle Scholar
  129. Kodydková J, Vávrová L, Zeman M, Jirák R, Macásek J, Stanková B, Tvrzická E, Zák A (2009) Antioxidative enzymes and increased oxidative stress in depressive women. Clin Biochem 42(13–14):1368–1374PubMedCrossRefGoogle Scholar
  130. Koo JW, Duman RS (2008) IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci USA 105(2):751–756PubMedCrossRefGoogle Scholar
  131. Kroemer G, Zamzami N, Susin SA (1997) Mitochondrial control of apoptosis. Immunol Today 18(1):44–51PubMedCrossRefGoogle Scholar
  132. Kubera M, Symbirtsev A, Basta-Kaim A, Borycz J, Roman A, Papp M, Claesson M (1996) Effect of chronic treatment with imipramine on interleukin 1 and interleukin 2 production by splenocytes obtained from rats subjected to a chronic mild stress model of depression. Pol J Pharmacol 48(5):503–506PubMedGoogle Scholar
  133. Kubera M, Holan V, Mathison R, Maes M (2000a) The effect of repeated amitriptyline and desipramine administration on cytokine release in C57BL/6 mice. Psychoneuroendocrinology 25(8):785–797PubMedCrossRefGoogle Scholar
  134. Kubera M, Kenis G, Bosmans E, Zieba A, Dudek D, Nowak G, Maes M (2000b) Plasma levels of interleukin-6, interleukin-10, and interleukin-1 receptor antagonist in depression: comparison between the acute state and after remission. Pol J Pharmacol 52(3):237–241PubMedGoogle Scholar
  135. Kubera M, Simbirtsev A, Mathison R, Maes M (2000c) Effects of repeated fluoxetine and citalopram administration on cytokine release in C57BL/6 mice. Psychiatry Res 96(3):255–266PubMedCrossRefGoogle Scholar
  136. Kubera M, Obuchowicz E, Goehler L, Brzeszcz J, Maes M (2011) In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 35(3):744–759PubMedCrossRefGoogle Scholar
  137. Kulkarni S, Dhir A, Akula KK (2009) Potentials of curcumin as an antidepressant. Sci World J 9:1233–1241CrossRefGoogle Scholar
  138. Kumar P, Kumar A (2009) Possible role of sertraline against 3-nitropropionic acid induced behavioral, oxidative stress and mitochondrial dysfunctions in rat brain. Prog Neuropsychopharmacol Biol Psychiatry 33(1):100–108PubMedCrossRefGoogle Scholar
  139. Lai J, Moxey A, Nowak G, Vashum K, Bailey K, McEvoy M (2011) The efficacy of zinc supplementation as therapy for depression: systematic review of randomized controlled trials. J Affect Disord. doi:10.1016/j.jad.2011.06.022
  140. Langsjoen PH, Langsjoen JO, Langsjoen AM, Lucas LA (2005) Treatment of statin adverse effects with supplemental Coenzyme Q10 and statin drug discontinuation. Biofactors 25(1–4):147–152PubMedCrossRefGoogle Scholar
  141. Lanquillon S, Krieg JC, Bening-Abu-Shach U, Vedder H (2000) Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacology 22(4):370–379PubMedCrossRefGoogle Scholar
  142. Lante F, Meunier J, Guiramand J et al (2008) Late N-acetylcysteine treatment prevents the deficits induced in the offspring of dams exposed to an immune stress during gestation. Hippocampus 18:602–609PubMedCrossRefGoogle Scholar
  143. Leconte C, Bihel E, Lepelletier FX, Bouët V, Saulnier R, Petit E, Boulouard M, Bernaudin M, Schumann-Bard P (2011) Comparison of the effects of erythropoietin and its carbamylated derivative on behaviour and hippocampal neurogenesis in mice. Neuropharmacology 60(2–3):354–364PubMedCrossRefGoogle Scholar
  144. Lee KM, Kim YK (2006) The role of IL-12 and TGF-beta1 in the pathophysiology of major depressive disorder. Int Immunopharmacol 6(8):1298–1304PubMedCrossRefGoogle Scholar
  145. Lee JS, Surh YJ (2005) Nrf2 as a novel molecular target for chemoprevention. Cancer Lett 224(2):171–184PubMedCrossRefGoogle Scholar
  146. Lee JM, Shih AY, Murphy TH, Johnson JA (2003) NF-E2-related factor-2 mediates neuroprotection against mitochondrial complex I inhibitors and increased concentrations of intracellular calcium in primary cortical neurons. J Biol Chem 278(39):37948–37956PubMedCrossRefGoogle Scholar
  147. Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, Crowe RA, Cascio WE, Bradham CA, Brenner DA, Herman B (1998) The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1366(1–2):177–196PubMedGoogle Scholar
  148. Lenox RH, Hahn CG (2000) Overview of the mechanism of action of lithium in the brain: fifty-year update. J Clin Psychiatry 61(Suppl 9):5–15PubMedGoogle Scholar
  149. Leonard BE, Maes M (2011) Mechanistic explanations how activated inflammatory, oxidative and nitrosative stress pathways cause depression. Neurosci Biobehav Rev (Epub ahead of print)Google Scholar
  150. Li X, Bijur GN, Jope RS (2002) Glycogen synthase kinase-3beta, mood stabilizers, and neuroprotection. Bipolar Disord 4(2):137–144PubMedCrossRefGoogle Scholar
  151. Li X, Zhu W, Roh MS, Friedman AB, Rosborough K, Jope RS (2004) In vivo regulation of glycogen synthase kinase-3beta (GSK3beta) by serotonergic activity in mouse brain. Neuropsychopharmacology 29:1426–1431PubMedCrossRefGoogle Scholar
  152. Li X, Rosborough KM, Friedman AB, Zhu W, Roth KA (2007) Regulation of mouse brain glycogen synthase kinase-3 by atypical antipsychotics. Int J Neuropsychopharmacol 10:7–19PubMedCrossRefGoogle Scholar
  153. Lin PY, Su KP (2007) A meta-analytic review of double-blind, placebo-controlled trials of antidepressant efficacy of omega-3 fatty acids. J Clin Psychiatry 68(7):1056–1061PubMedCrossRefGoogle Scholar
  154. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79(4):1431–1568PubMedGoogle Scholar
  155. Li-Smerin Y, Levitan ES, Johnson JW (2001) Free intracellular Mg(2+) concentration and inhibition of NMDA responses in cultured rat neurons. J Physiol 533:729–743PubMedCrossRefGoogle Scholar
  156. Loix S, De Kock M, Henin P (2011) The anti-inflammatory effects of ketamine: state of the art. Acta Anaesthesiol Belg 62(1):47–58PubMedGoogle Scholar
  157. Lorenzetti V, Allen NB, Fornito A, Yucel M (2009) Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies. J Affect Disord 117(1–2):1–17PubMedCrossRefGoogle Scholar
  158. Luchetti F, Canonico B, Betti M, Arcangeletti M, Pilolli F, Piroddi M, Canesi L, Papa S, Galli F (2010) Melatonin signaling and cell protection function. FASEB J 24(10):3603–3624PubMedCrossRefGoogle Scholar
  159. MacAulay K, Woodgett JR (2008) Targeting glycogen synthase kinase-3 (GSK-3) in the treatment of type 2 diabetes. Expert Opin Ther Targets 12(10):1265–1274PubMedCrossRefGoogle Scholar
  160. Machado-Vieira R, Manji HK, Zarate CA Jr (2009) The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disord 11(Suppl 2):92–109PubMedCrossRefGoogle Scholar
  161. Maes M (1995) Evidence for an immune response in major depression: a review and hypothesis. Prog Neuropsychopharmacol Biol Psychiatry 19(1):11–38PubMedCrossRefGoogle Scholar
  162. Maes M (2011) Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Prog Neuropsychopharmacol Biol Psychiatry 35(3):664–675PubMedCrossRefGoogle Scholar
  163. Maes M, Meltzer HY (1995) The serotonin hypothesis of major depression. selected chapters on mood disorders. In: Bloom F, Kupfer D (eds) Psychopharmacology. The fourth generation of progress. Raven Press, USA, pp 933–944Google Scholar
  164. Maes M, Bosmans E, Suy E, Vandervorst C, De Jonckheere C, Raus J (1990) Immune disturbances during major depression: upregulated expression of interleukin-2 receptors. Neuropsychobiology 24(3):115–120PubMedCrossRefGoogle Scholar
  165. Maes M, Scharpé S, Van Grootel L, Uyttenbroeck W, Cooreman W, Cosyns P, Suy E (1992) Higher alpha 1-antitrypsin, haptoglobin, ceruloplasmin and lower retinol binding protein plasma levels during depression: further evidence for the existence of an inflammatory response during that illness. J Affect Disord 24(3):183–192PubMedCrossRefGoogle Scholar
  166. Maes M, Bosmans E, De Jongh R, Kenis G, Vandoolaeghe E, Neels H (1997a) Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine 9(11):853–858PubMedCrossRefGoogle Scholar
  167. Maes M, Delange J, Ranjan R, Meltzer HY, Desnyder R, Cooremans W, Scharpé S (1997b) Acute phase proteins in schizophrenia, mania and major depression: modulation by psychotropic drugs. Psychiatry Res 66(1):1–11PubMedCrossRefGoogle Scholar
  168. Maes M, Christophe A, Delanghe J, Altamura C, Neels H, Meltzer HY (1999a) Lowered omega3 polyunsaturated fatty acids in serum phospholipids and cholesteryl esters of depressed patients. Psychiatry Res 85(3):275–291PubMedCrossRefGoogle Scholar
  169. Maes M, Song C, Lin AH, Bonaccorso S, Kenis G, De Jongh R, Bosmans E, Scharpe S (1999b) Negative immunoregulatory effects of antidepressants: inhibition of interferon-gamma and stimulation of interleukin-10 secretion. Neuropsychopharmacol 20(4):370–379CrossRefGoogle Scholar
  170. Maes M, De Vos N, Pioli R, Demedts P, Wauters A, Neels H, Christophe A (2000) Lower serum vitamin E concentrations in major depression. Another marker of lowered antioxidant defences in that illness. J Affect Disord 58(3):241–246PubMedCrossRefGoogle Scholar
  171. Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E (2009a) Increased 8-hydroxy-deoxyguanosine, a marker of oxidative damage to DNA, in major depression and myalgic encephalomyelitis/chronic fatigue syndrome. Neuro Endocrinol Lett 30(6):715–722PubMedGoogle Scholar
  172. Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E (2009b) Lower plasma Coenzyme Q10 in depression: a marker for treatment resistance and chronic fatigue in depression and a risk factor to cardiovascular disorder in that illness. Neuro Endocinol Lett 30:462–469Google Scholar
  173. Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J, Perini G, Kubera M, Bob P, Lerer B, Maj M (2009c) The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 24(1):27–53PubMedCrossRefGoogle Scholar
  174. Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E (2010) Increased plasma peroxides and serum oxidized low density lipoprotein antibodies in major depression: markers that further explain the higher incidence of neurodegeneration and coronary artery disease. J Affect Disord 125(1–3):287–294PubMedCrossRefGoogle Scholar
  175. Maes M, Galecki P, Chang YS, Berk M (2011a) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 35(3):676–692PubMedCrossRefGoogle Scholar
  176. Maes M, Leonard B, Fernandez A, Kubera M, Nowak G, Veerhuis R, Gardner A, Ruckoanich P, Geffard M, Altamura C, Galecki P, Berk M (2011b) (Neuro)inflammation and neuroprogression as new pathways and drug targets in depression: from antioxidants to kinase inhibitors. Prog Neuropsychopharmacol Biol Psychiatry 35(3):659–663PubMedCrossRefGoogle Scholar
  177. Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R (2011c) The new ‘5-HT’ hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 35(3):702–721PubMedCrossRefGoogle Scholar
  178. Maes M, Mihaylova I, Kubera M, Leunis JC, Geffard M (2011d) IgM-mediated autoimmune responses directed against multiple neoepitopes in depression: new pathways that underpin the inflammatory and neuroprogressive pathophysiology. J Affect Disord 135(1–3):414–418PubMedCrossRefGoogle Scholar
  179. Maes M, Mihaylova I, Kubera M, Ringel K (2011e) Activation of cell-mediated immunity in depression: association with inflammation, melancholia, clinical staging and the fatigue and somatic symptom cluster of depression. Prog Neuropsychopharmacol Biol Psychiatry. PMID: 21945535 (Epub ahead of print)Google Scholar
  180. Maier SF, Watkins LR (1995) Intracerebroventricular interleukin-1 receptor antagonist blocks the enhancement of fear conditioning and interference with escape produced by inescapable shock. Brain Res 695(2):279–282PubMedCrossRefGoogle Scholar
  181. Malberg JE, Monteggia LM (2008) VGF, a new player in antidepressant action? Sci Signal 1(18):pe19Google Scholar
  182. Malhi GS, Berk M (2007) Does dopamine dysfunction drive depression? Acta Psychiatr Scand Suppl 433:116–124PubMedCrossRefGoogle Scholar
  183. Malhi GS, Berk M (2011) Balance restored: lithium remains a safe and sound choice. Lancet (in press)Google Scholar
  184. Malhotra D, Portales-Casamar E, Singh A, Srivastava S, Arenillas D, Happel C, Shyr C, Wakabayashi N, Kensler TW, Wasserman WW, Biswal S (2010) Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic Acids Res 38(17):5718–5734PubMedCrossRefGoogle Scholar
  185. Martin M, Rehani K, Jope RS, Michalek SM (2005) Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol 6:777–7784PubMedCrossRefGoogle Scholar
  186. Maurer IC, Schippel P, Volz HP (2009) Lithium-induced enhancement of mitochondrial oxidative phosphorylation in human brain tissue. Bipolar Disord 11(5):515–522PubMedCrossRefGoogle Scholar
  187. McKinnon MC, Yucel K, Nazarov A, MacQueen GM (2009) A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. J Psychiatry Neurosci (Meta Anal Rev) 34(1):41–54Google Scholar
  188. Medina M, Avila J (2010) Glycogen synthase kinase-3 (GSK-3) inhibitors for the treatment of Alzheimer’s disease. Curr Pharm Des 16(25):2790–2798PubMedGoogle Scholar
  189. Medina M, Castro A (2008) Glycogen synthase kinase-3 (GSK-3) inhibitors reach the clinic. Curr Opin Drug Discov Dev 11(4):533–543Google Scholar
  190. Medina M, Wandosell FJ (2011) Deconstructing GSK-3: the fine regulation of its activity. Int J Alz Dis 479249. doi:10.4061/2011/479249
  191. Medina M, Garrido JJ, Wandosell FJ (2011) Modulation of GSK-3 as a therapeutic strategy on Tau pathologies. Front Mol Neurosci 4:24PubMedCrossRefGoogle Scholar
  192. Michel TM, Camara S, Tatschner T, Frangou S, Sheldrick AJ, Riederer P, Grunblatt E (2008) Increased xanthine oxidase in the thalamus and putamen in depression. World J Biol Psychiatry 12:1–7CrossRefGoogle Scholar
  193. Miura T, Tanno M, Sato T (2010) Mitochondrial kinase signalling pathways in myocardial protection from ischaemia/reperfusion-induced necrosis. Cardiovasc Res 88(1):7–15PubMedCrossRefGoogle Scholar
  194. Mizuno S, Yamamoto M, Sugawara I (2010) Significant reduction of granulomas in Nrf2-deficient mice infected with Mycobacterium tuberculosis. Indian J Tuberc 57(2):108–113PubMedGoogle Scholar
  195. Moghaddam B (2002) Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders. Biol Psychiatry 51(10):775–787PubMedCrossRefGoogle Scholar
  196. Mohr DC, Boudewyn AC, Goodkin DE, Bostrom A, Epstein L (2001a) Comparative outcomes for individual cognitive-behavior therapy, supportive-expressive group psychotherapy, and sertraline for the treatment of depression in multiple sclerosis. J Consult Clin Psychol 69(6):942–949PubMedCrossRefGoogle Scholar
  197. Mohr DC, Goodkin DE, Islar J, Hauser SL, Genain CP (2001b) Treatment of depression is associated with suppression of nonspecific and antigen-specific T(H)1 responses in multiple sclerosis. Arch Neurol 58(7):1081–1086PubMedCrossRefGoogle Scholar
  198. Molina-Hernández M, Tellez-Alcántara NP, Pérez-García J, Olivera-Lopez JI, Jaramillo-Jaimes MT (2008) Antidepressant-like actions of minocycline combined with several glutamate antagonists. Prog Neuropsychopharmacol Biol Psychiatry 32(2):380–386PubMedCrossRefGoogle Scholar
  199. Moncrieff J, Wessely S, Hardy R (2004) Active placebos versus antidepressants for depression. Cochrane Database Syst Rev 1:CD003012Google Scholar
  200. Müller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Müller B, Spellmann I, Hetzel G, Maino K, Kleindienst N, Möller HJ, Arolt V, Riedel M (2006) The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry 11(7):680–684PubMedCrossRefGoogle Scholar
  201. Murphy MP (2009) Mitochondria—a neglected drug target. Curr Opin Investig Drugs 10(10):1022–1024PubMedGoogle Scholar
  202. Nahon E, Israelson A, Abu-Hamad S, Varda SB (2005) Fluoxetine (Prozac) interaction with the mitochondrial voltage-dependent anion channel and protection against apoptotic cell death. FEBS Lett 579(22):5105–5110PubMedCrossRefGoogle Scholar
  203. Nerland DE (2007) The antioxidant/electrophile response element motif. Drug Metab Rev 39(1):235–248PubMedCrossRefGoogle Scholar
  204. Nestler EJ, Carlezon WA Jr (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59(12):1151–1159PubMedCrossRefGoogle Scholar
  205. Nicholls DG (2008) Oxidative stress and energy crises in neuronal dysfunction. Ann NY Acad Sci 1147:53–60PubMedCrossRefGoogle Scholar
  206. Nowak G, Siwek M, Dudek D, Zieba A, Pilc A (2003) Effect of zinc supplementation on antidepressant therapy in unipolar depression: a preliminary placebo-controlled study. Pol J Pharmacol 55:1143–1147PubMedGoogle Scholar
  207. O’Shea JJ, Paul WE (2010) Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327:1098–1102PubMedCrossRefGoogle Scholar
  208. O’Brien SM, Scully P, Fitzgerald P, Scott LV, Dinan TG (2007) Plasma cytokine profiles in depressed patients who fail to respond to selective serotonin reuptake inhibitor therapy. J Psychiatr Res 41(3–4):326–331PubMedCrossRefGoogle Scholar
  209. O’Connor JC, André C, Wang Y, Lawson MA, Szegedi SS, Lestage J, Castanon N, Kelley KW, Dantzer R (2009) Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette–Guerin. J Neurosci 29(13):4200–4209PubMedCrossRefGoogle Scholar
  210. Owen AJ, Batterham MJ, Probst YC, Grenyer BF, Tapsell LC (2005) Low plasma vitamin E levels in major depression: diet or disease? Eur J Clin Nutr 59(2):304–306PubMedCrossRefGoogle Scholar
  211. Ozcan ME, Gulec M, Ozerol E, Polat R, Akyol O (2004) Antioxidant enzyme activities and oxidative stress in affective disorders. Int Clin Psychopharmacol 19(2):89–95PubMedCrossRefGoogle Scholar
  212. Pae CU, Marks DM, Han C, Patkar AA (2008) Does minocycline have antidepressant effect? Biomed Pharmacother 62(5):308–311PubMedCrossRefGoogle Scholar
  213. Paintlia MK, Paintlia AS, Khan M et al (2008) Modulation of peroxisome proliferator-activated receptor-alpha activity by N-acetyl cysteine attenuates inhibition of oligodendrocyte development in lipo-polysaccharide stimulated mixed glial cultures. J Neurochem 105:956–970PubMedCrossRefGoogle Scholar
  214. Pan H, Wang H, Zhu L, Mao L, Qiao L, Su X (2011) Depletion of nrf2 enhances inflammation induced by oxyhemoglobin in cultured mice astrocytes. Neurochem Res 36(12):2434–2441PubMedCrossRefGoogle Scholar
  215. Pasco JA, Jacka FN, Williams LJ, Henry MJ, Nicholson GC, Kotowicz MA, Berk M (2010) Clinical implications of the cytokine hypothesis of depression: the association between use of statins and aspirin and the risk of major depression. Psychother Psychosom 79(5):323–325PubMedCrossRefGoogle Scholar
  216. Passi S, Stancato A, Aleo E, Dmitrieva A, Littarru GP (2003) Statins lower plasma and lymphocyte ubiquinol/ubiquinone without affecting other antioxidants and PUFA. Biofactors 18(1–4):113–124PubMedCrossRefGoogle Scholar
  217. Peineau S, Bradley C, Taghibiglou C, Doherty A, Bortolotto ZA, Wang YT, Collingridge GL (2008) The role of GSK-3 in synaptic plasticity. Br J Pharmacol 153:S428–S437PubMedCrossRefGoogle Scholar
  218. Periyasamy S, Sánchez ER (2002) Antagonism of glucocorticoid receptor transactivity and cell growth inhibition by transforming growth factor-beta through AP-1-mediated transcriptional repression. Int J Biochem Cell Biol 34(12):1571–1585PubMedCrossRefGoogle Scholar
  219. Piantadosi CA, Withers CM, Bartz RR, MacGarvey NC, Fu P, Sweeney TE, Welty-Wolf KE, Suliman HB (2011) Heme oxygenase-1 couples activation of mitochondrial biogenesis to anti-inflammatory cytokine expression. J Biol Chem 286(18):16374–16385PubMedCrossRefGoogle Scholar
  220. Plein H, Berk M (2000) Changes in the platelet intracellular calcium response to serotonin in patients with major depression treated with electroconvulsive therapy: state or trait marker status. Int Clin Psychopharmacol 15(2):93–98PubMedCrossRefGoogle Scholar
  221. Polter AM, Li X (2011) Glycogen synthase kinase-3 is an intermediate modulator of serotonin neurotransmission. Front Mol Neurosci 4:31PubMedCrossRefGoogle Scholar
  222. Popoli M (2009) Agomelatine: innovative pharmacological approach in depression. CNS Drugs 23(Suppl 2):27–34PubMedCrossRefGoogle Scholar
  223. Qian HR, Yang Y (2009) Neuron differentiation and neuritogenesis stimulated by N-acetylcysteine (NAC). Acta Pharmacol Sin 30(7):907–912PubMedCrossRefGoogle Scholar
  224. Quiroz JA, Gray NA, Kato T, Manji HK (2008) Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology 33(11):2551–2565PubMedCrossRefGoogle Scholar
  225. Ramsey CP, Glass CA, Montgomery MB, Lindl KA, Ritson GP, Chia LA, Hamilton RL, Chu CT, Jordan-Sciutto KL (2007) Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol 66:75–85PubMedCrossRefGoogle Scholar
  226. Rasola A, Sciacovelli M, Chiara F, Pantic B, Brusilow WS, Bernardi P (2010) Activation of mitochondrial ERK protects cancer cells from death through inhibition of the permeability transition. Proc Natl Acad Sci USA 107(2):726–731PubMedCrossRefGoogle Scholar
  227. Ray WJ Jr, Szymanki ES, Ng L (1978) The binding of lithium and of anionic metabolites to phosphoglucomutase. Biochim Biophys Acta 522(2):434–442PubMedGoogle Scholar
  228. Rehani K, Wang H, Garcia CA, Kinane DF, Martin M (2009) Toll-like receptor-mediated production of IL-1Ra is negatively regulated by GSK3 via the MAPK ERK1/2. J Immunol 182(1):547–553PubMedGoogle Scholar
  229. Rodríguez-Hernández A, Cordero MD, Salviati L, Artuch R, Pineda M, Briones P, Gómez Izquierdo L, Cotán D, Navas P, Sánchez-Alcázar JA (2009) Coenzyme Q deficiency triggers mitochondria degradation by mitophagy. Autophagy 5(1):19–32PubMedCrossRefGoogle Scholar
  230. Rojo AI, Rada P, Egea J, Rosa AO, Lopez MG, Cuadrado A (2008a) Functional interference between glycogen synthase kinase-3 beta and the transcription factor Nrf2 in protection against kainate-induced hippocampal cell death. Mol Cell Neurosci 39:125–132PubMedCrossRefGoogle Scholar
  231. Rojo AI, Sagarra MR, Cuadrado A (2008b) GSK-3β down-regulates the transcription factor Nrf2 after oxidant damage: relevance to exposure of neuronal cells to oxidative stress. J Neurochem 105(1):192–202PubMedCrossRefGoogle Scholar
  232. Romeo L, Intrieri M, D’Agata V, Mangano NG, Oriani G, Ontario ML, Scapagnini G (2009) The major green tea polyphenol, (−)-epigallocatechin-3-gallate, induces heme oxygenase in rat neurons and acts as an effective neuroprotective agent against oxidative stress. J Am Coll Nutr 28(Suppl):492S–499SPubMedGoogle Scholar
  233. Rosa AO, Kaster MP, Binfaré RW, Morales S, Martín-Aparicio E, Navarro-Rico ML, Martínez A, Medina M, García AG, Lopez MG, Rodrigues ALS (2008) Antidepressant-like effects of the novel thiadiazolidinone NP031115 in mice. Prog Neuro Psychopharm Biol Psychiatry 32:1549–1556CrossRefGoogle Scholar
  234. Rosenberg G (2007) The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees? Cell Mol Life Sci 64(16):2090–2103Google Scholar
  235. Rowe MK, Wiest C, Chuang DM (2007) GSK-3 is a viable potential target for therapeutic intervention in bipolar disorder. Neurosci Biobehav Rev 31:920–931PubMedCrossRefGoogle Scholar
  236. Sachdeva AK, Kuhad A, Chopra K (2011) Epigallocatechin gallate ameliorates behavioral and biochemical deficits in rat model of load-induced chronic fatigue syndrome. Brain Res Bull 86(3–4):165–172PubMedCrossRefGoogle Scholar
  237. Sakić B, Szechtman H, Braciak T, Richards C, Gauldie J, Denburg JA (1997) Reduced preference for sucrose in autoimmune mice: a possible role of interleukin-6. Brain Res Bull 44(2):155–165PubMedCrossRefGoogle Scholar
  238. Sakić B, Gauldie J, Denburg JA, Szechtman H (2001) Behavioral effects of infection with IL-6 adenovector. Brain Behav Immun 15(1):25–42PubMedCrossRefGoogle Scholar
  239. Samavati L, Rastogi R, Du W, Huttemann M, Fite A, Franchi L (2009) STAT3 tyrosine phosphorylation is critical for interleukin 1 beta and interleukin-6 production in response to lipopolysaccharide and live bacteria. Mol Immunol 46:1867–1877PubMedCrossRefGoogle Scholar
  240. Sandi C (2004) Stress, cognitive impairment and cell adhesion molecules. Nat Rev Neurosci 5:917–930PubMedCrossRefGoogle Scholar
  241. Sandi C, Bisaz R (2007) A model for the involvement of neural cell adhesion molecules in stress-related mood disorders. Neuroendocrinology 85(3):158–176PubMedCrossRefGoogle Scholar
  242. Scapagnini G, D’Agata V, Calabrese V, Pascale A, Colombrita C, Alkon D, Cavallaro S (2002) Gene expression profiles of heme oxygenase isoforms in the rat brain. Brain Res 954(1):51–59PubMedCrossRefGoogle Scholar
  243. Scapagnini G, Caruso C, Calabrese V (2010) Therapeutic potential of dietary polyphenols against brain ageing and neurodegenerative disorders. Adv Exp Med Biol 698:27–35PubMedCrossRefGoogle Scholar
  244. Scapagnini G, Caruso C, Calabrese V (2011a) Therapeutic potential of dietary polyphenols against brain ageing and neurodegenerative disorders. Adv Exp Med Biol 698:27–35CrossRefGoogle Scholar
  245. Scapagnini G, Vasto S, Abraham NG, Caruso C, Zella D, Fabio G (2011b) Modulation of Nrf2/ARE pathway by food polyphenols: a nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Mol Neurobiol 44(2):192–201PubMedCrossRefGoogle Scholar
  246. Schmidt HD, Duman RS (2007) The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav Pharmacol 18(5–6):391–418PubMedCrossRefGoogle Scholar
  247. Schmidt AJ, Heiser P, Hemmeter UM, Krieg JC, Vedder H (2008) Effects of antidepressants on mRNA levels of antioxidant enzymes in human monocytic U-937 cells. Prog Neuropsychopharmacol Biol Psychiatry 32(6):1567–1573PubMedCrossRefGoogle Scholar
  248. Seidel A, Arolt V, Hunstiger M, Rink L, Behnisch A, Kirchner H (1995) Cytokine production and serum proteins in depression. Scand J Immunol 41(6):534–538PubMedCrossRefGoogle Scholar
  249. Shah PJ, Glabus MF, Goodwin GM, Ebmeier KP (2002) Chronic, treatment-resistant depression and right fronto-striatal atrophy. Br J Psychiatr 180:434–440CrossRefGoogle Scholar
  250. Shaldubina A, Agam G, Belmaker RH (2001) The mechanism of lithium action: state of the art, ten years later. Prog Neuropsychopharmacol Biol Psychiatry 25(4):855–866PubMedCrossRefGoogle Scholar
  251. Shao L, Martin MV, Watson SJ, Schatzberg A, Akil H, Myers RM, Jones EG, Bunney WE, Vawter MP (2008) Mitochondrial involvement in psychiatric disorders. Ann Med 40(4):281–295PubMedCrossRefGoogle Scholar
  252. Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, Johnson JA, Murphy TH (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23:3394–3406PubMedGoogle Scholar
  253. Sirianni RW, Olausson P, Chiu AS, Taylor JR, Saltzman WM (2010) The behavioral and biochemical effects of BDNF containing polymers implanted in the hippocampus of rats. Brain Res 1321:40–50PubMedCrossRefGoogle Scholar
  254. Siwek M, Dudek D, Paul IA, Sowa-Kucma M, Zieba A, Popik P, Pilc A, Nowak G (2009) Zinc supplementation augments efficacy of imipramine in treatment resistant patients: a double blind, placebo-controlled study. J Affect Disord 118:187–195PubMedCrossRefGoogle Scholar
  255. Smith RAJ, Murphy MP (2011) Mitochondrial-targeted antioxidants as therapies. Disc Med 11(57):106–114Google Scholar
  256. Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15:1768–1777PubMedGoogle Scholar
  257. Song C, Wang H (2011) Cytokines mediated inflammation and decreased neurogenesis in animal models of depression. Prog Neuropsychopharmacol Biol Psychiatry 35(3):760–768PubMedCrossRefGoogle Scholar
  258. Song C, Horrobin DF, Leonard BE (2006) The comparison of changes in behavior, neurochemistry, endocrine, and immune functions after different routes, doses and durations of administrations of IL-1beta in rats. Pharmacopsychiatry 39(3):88–99PubMedCrossRefGoogle Scholar
  259. Stafford L, Berk M (2011) The use of statins after a cardiac intervention is associated with reduced risk of subsequent depression: proof of concept for the inflammatory and oxidative hypotheses of depression? J Clin Psychiatry 72(9):1229–1235PubMedCrossRefGoogle Scholar
  260. Stambolic V, Woodgett JR (1994) Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem J 303(3):701–704PubMedGoogle Scholar
  261. Stavrovskaya IG, Narayanan MV, Zhang W, Krasnikov BF, Heemskerk J, Young SS, Blass JP, Brown AM, Beal MF, Friedlander RM, Kristal BS (2004) Clinically approved heterocyclics act on a mitochondrial target and reduce stroke-induced pathology. J Exp Med 200(2):211–222PubMedCrossRefGoogle Scholar
  262. Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY, Uylings HB, Friedman L, Rajkowska G (2004) Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry 56(9):640–650PubMedCrossRefGoogle Scholar
  263. Stork C, Renshaw PF (2005) Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry 10(10):900–919PubMedCrossRefGoogle Scholar
  264. Sun Z, Zhang S, Chan JY, Zhang DD (2007) Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2. Mol Cell Biol 27(18):6334–6349PubMedCrossRefGoogle Scholar
  265. Suomalainen A, Majander A, Haltia M, Somer H, Lönnqvist J, Savontaus ML, Peltonen L (1992) Multiple deletions of mitochondrial DNA in several tissues of a patient with severe retarded depression and familial progressive external ophthalmoplegia. J Clin Invest 90(1):61–66PubMedCrossRefGoogle Scholar
  266. Szewczyk B, Poleszak E, Sowa-Kucma M, Siwek M, Dudek D, Ryszewska-Pokraśniewicz B, Radziwoń-Zaleska M, Opoka W, Czekaj J, Pilc A, Nowak G (2008) Antidepressant activity of zinc and magnesium in view of current hypotheses of antidepressant action. Pharmacol Rep 60:588–599PubMedGoogle Scholar
  267. Szewczyk B, Kubera M, Nowak G (2011) The role of zinc in neurodegenerative inflammatory pathways in depression. Progr Neuro Psychopharmacol Biol Psychiatry 35:693–701CrossRefGoogle Scholar
  268. Tsuboi H, Tatsumi A, Yamamoto K, Kobayashi F, Shimoi K, Kinae N (2006) Possible connections among job stress, depressive symptoms, lipid modulation and antioxidants. J Affect Disord 91(1):63–70PubMedCrossRefGoogle Scholar
  269. Turner CA, Akil H, Watson SJ, Evans SJ (2006) The fibroblast growth factor system and mood disorders. Biol Psychiatry 59(12):1128–1135PubMedCrossRefGoogle Scholar
  270. Ungvari Z, Sonntag WE, de Cabo R, Baur JA, Csiszar A (2011) Mitochondrial protection by resveratrol. Exerc Sport Sci Rev 39(3):128–132PubMedCrossRefGoogle Scholar
  271. Vaidya VA, Duman RS (2001) Depression—emerging insights from neurobiology. Br Med Bull 57:61–79PubMedCrossRefGoogle Scholar
  272. Valvassori SS, Rezin GT, Ferreira CL, Moretti M, Gonçalves CL, Cardoso MR, Streck EL, Kapczinski F, Quevedo J (2010) Effects of mood stabilizers on mitochondrial respiratory chain activity in brain of rats treated with d-amphetamine. J Psychiatr Res 44(14):903–909PubMedCrossRefGoogle Scholar
  273. Vargas MR, Johnson DA, Sirkis DW, Messing A, Johnson JA (2008) Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci 50:13574–13581CrossRefGoogle Scholar
  274. Venugopal R, Jaiswal AK (1996) Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc Natl Acad Sci USA 93(25):14960–14965PubMedCrossRefGoogle Scholar
  275. Wang X, Ryter SW, Dai C, Tang ZL, Watkins SC, Yin XM, Song R, Choi AM (2003) Necrotic cell death in response to oxidant stress involves the activation of the apoptogenic caspase-8/bid pathway. J Biol Chem 278(31):29184–29191PubMedCrossRefGoogle Scholar
  276. Wang X, Zhang J, Kim HP, Wang Y, Choi AM, Ryter SW (2004) Bcl-XL disrupts death-inducing signal complex formation in plasma membrane induced by hypoxia/reoxygenation. FASEB J 18(15):1826–1833PubMedCrossRefGoogle Scholar
  277. Wang D, Noda Y, Tsunekawa H, Zhou Y, Miyazaki M, Senzaki K, Nabeshima T (2007) Behavioural and neurochemical features of olfactory bulbectomized rats resembling depression with comorbid anxiety. Behav Brain Res 178(2):262–273PubMedCrossRefGoogle Scholar
  278. Wang JF, Shao L, Sun X, Young LT (2009) Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. Bipolar Disord 11(5):523–529PubMedCrossRefGoogle Scholar
  279. Wang H, Brown J, Martin M (2011a) Glycogen synthase kinase 3: a point of convergence for the host inflammatory response. Cytokine 53:130–140PubMedCrossRefGoogle Scholar
  280. Wang X, de Rivero Vaccari JP, Wang H, Diaz P, German R, Marcillo AE, Keane RW (2011b) Activation of the nuclear factor E2-related factor 2/antioxidant response element pathway is neuroprotective after spinal cord injury. J Neurotrauma Sep 21 (Epub ahead of print)Google Scholar
  281. Wang Y, Yang F, Liu YF, Gao F, Jiang W (2011c) Acetylsalicylic acid as an augmentation agent in fluoxetine treatment resistant depressive rats. Neurosci Lett 499(2):74–79PubMedCrossRefGoogle Scholar
  282. Wang Y, Xiao Z, Liu X, Berk M (2011d) Venlafaxine modulates depression-induced behaviour and the expression of Bax mRNA and Bcl-xl mRNA in both hippocampus and myocardium. Hum Psychopharmacol 26(2):95–101PubMedCrossRefGoogle Scholar
  283. Wei QY, Chen WF, Zhou B, Yang L, Liu ZL (2006) Inhibition of lipid peroxidation and protein oxidation in rat liver mitochondria by curcumin and its analogues. Biochim Biophys Acta 1760(1):70–77PubMedCrossRefGoogle Scholar
  284. Whatley SA, Curti D, Marchbanks RM (1996) Mitochondrial involvement in schizophrenia and other functional psychoses. Neurochem Res 21:995–1004PubMedCrossRefGoogle Scholar
  285. Whittle BJ, Varga C, Posa A, Molnar A, Collin M, Thiemermann C (2006) Reduction of experimental colitis in the rat by inhibitors of glycogen synthase kinase-3beta. Br J Pharmacol 147:575–582PubMedCrossRefGoogle Scholar
  286. Witte ME, Geurts JJ, de Vries HE, van der Valk P, van Horssen J (2010) Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration? Mitochondrion 10(5):411–418PubMedCrossRefGoogle Scholar
  287. Wojda U, Salinska E, Kuznicki J (2008) Calcium ions in neuronal degeneration. IUBMB Life 60(9):575–590PubMedCrossRefGoogle Scholar
  288. Wrynn AS, Mac Sweeney CP, Franconi F, Lemaire L, Pouliquen D, Herlidou S, Leonard BE, Gandon J, de Certaines JD (2000) An in vivo magnetic resonance imaging study of the olfactory bulbectomized rat model of depression. Brain Res 879(1-2):193–199PubMedCrossRefGoogle Scholar
  289. Xia Z, DePierre JW, Nassberger L (1996) Tricyclic antidepressants inhibit IL-6, IL-1 beta and TNF-alpha release in human blood monocytes and IL-2 and interferon-gamma in T cells. Immunopharmacology 34:27–37PubMedCrossRefGoogle Scholar
  290. Xia ZW, Zhong WW, Xu LQ, Sun JL, Shen QX, Wang JG, Shao J, Li YZ, Yu SC (2006) Heme oxygenase-1-mediated CD4+CD25high regulatory T cells suppress allergic airway inflammation. J Immunol 177(9):5936–5945PubMedGoogle Scholar
  291. Xu Y, Ku BS, Yao HY, Lin YH, Ma X, Zhang YH, Li XJ (2005) Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in rats. Pharmacol Biochem Behav 82(1):200–206PubMedCrossRefGoogle Scholar
  292. Xu Y, Ku B, Cui L, Li X, Barish PA, Foster TC, Ogle WO (2007) Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Res 1162:9–18PubMedCrossRefGoogle Scholar
  293. Xu Y, Wang Z, You W, Zhang X, Li S, Barish PA, Vernon MM, Du X, Li G, Pan J, Ogle WO (2010) Antidepressant-like effect of trans-resveratrol: involvement of serotonin and noradrenaline system. Eur Neuropsychopharmacol 20(6):405–413PubMedCrossRefGoogle Scholar
  294. Yamamoto T, Suzuki T, Kobayashi A, Wakabayashi J, Maher J, Motohashi H, Yamamoto M (2008) Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol Cell Biol 28(8):2758–2770PubMedCrossRefGoogle Scholar
  295. York JD, Ponder JW, Majerus PW (1995) Definition of a metal-dependent/Li(+)-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure. Proc Natl Acad Sci USA 92(11):5149–5153PubMedCrossRefGoogle Scholar
  296. Zafir A, Ara A, Banu N (2009) Invivo antioxidant status: a putative target of antidepressant action. Prog Neuropsychopharmacol Biol Psychiatry 33(2):220–228PubMedCrossRefGoogle Scholar
  297. Zhang WH, Wang H, Wang X, Narayanan MV, Stavrovskaya IG, Kristal BS, Friedlander RM (2008) Nortriptyline protects mitochondria and reduces cerebral ischemia/hypoxia injury. Stroke 39(2):455–462PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Michael Maes
    • 1
  • Zdenĕk Fišar
    • 2
  • Miguel Medina
    • 3
  • Giovanni Scapagnini
    • 4
  • Gabriel Nowak
    • 5
  • Michael Berk
    • 6
    • 7
    • 8
  1. 1.Maes Clinics@TRIABangkokThailand
  2. 2.Department of Psychiatry, First Faculty of MedicineCharles University in Prague, General University Hospital in PraguePragueCzech Republic
  3. 3.NosciraTres CantosSpain
  4. 4.Department of Health SciencesUniversity of MoliseCampobassoItaly
  5. 5.Department of PharmacobiologyJagiellonian University Medical College, Institute of Pharmacology PASKrakowPoland
  6. 6.Department of Clinical and Biomedical SciencesThe University of MelbourneMelbourneAustralia
  7. 7.Orygen Research Centre, Centre for Youth Mental HealthThe University of MelbourneMelbourneAustralia
  8. 8.Mental Health Research InstituteMelbourneAustralia

Personalised recommendations