Inflammopharmacology

, Volume 20, Issue 6, pp 307–314 | Cite as

A review of the anticancer and immunomodulatory effects of Lycium barbarum fruit

  • Wai-Man Tang
  • Enoch Chan
  • Ching-Yee Kwok
  • Yee-Ki Lee
  • Jian-Hong Wu
  • Chun-Wai Wan
  • Robbie Yat-Kan Chan
  • Peter Hoi-Fu Yu
  • Shun-Wan Chan
Review

Abstract

The anticancer effects of traditional Chinese medicine (TCM) have attracted the attention of the public vis-à-vis existing cancer therapies with various side effects. Lycium barbarum fruit, commonly known as Gou Qi Zi in China, is a potential anticancer agent/adjuvant. Its major active ingredients, L. barbarum polysaccharides (LBP), scopoletin and 2-O-β-d-glucopyranosyl-l-ascorbic acid (AA-2βG), are found to have apoptotic and antiproliferative effects on cancer cell lines. Moreover, LBP also contributes to body’s immunomodulatory effects and enhances effects of other cancer therapies. It is not known whether there are any undesirable effects. Further studies on its pharmacological mechanisms and toxicology could facilitate a safe usage of this TCM herb.

Keywords

Anticancer Immunomodulation Lycium barbarum fruit Traditional Chinese medicine Pharmacology Polysaccharides 

References

  1. Altintas A, Kosar M, Kirimer N et al (2006) Composition of the essential oils of Lycium barbarum and L. Ruthenicum fruits. Chem Nat Comp 42:24–25CrossRefGoogle Scholar
  2. Brydoy M, Fossa SD, Dahl O et al (2007) Gonadal dysfunction and fertility problems in cancer survivors. Acta Oncol 46:480–489PubMedCrossRefGoogle Scholar
  3. Cao GW, Yang WG, Du P (1994) Observation of the effects of LAK/IL-2 therapy combining with Lycium barbarum polysaccharides in the treatment of 75 cancer patients. Zhonghua Zhong Liu Za Zhi 16:428–431PubMedGoogle Scholar
  4. Cao Y, Zhang X, Chu Q et al (2003) Determination of taurine in Lycium barbarum L. and other foods by capillary electrophoresis with electrochemical detection. Electroanalysis 15:898–902CrossRefGoogle Scholar
  5. Chang R (2002) Bioactive polysaccharides from traditional Chinese medicine herbs as anticancer adjuvants. J Altern Complement Med 8:559–565PubMedCrossRefGoogle Scholar
  6. Chan JY, Chan E, Chan SW et al (2011) Enhancement of in vitro and in vivo anticancer activities of polysaccharide peptide from Grifola frondosa by chemical modifications. Pharm Biol 49:1114–1120Google Scholar
  7. Chao JC, Chiang SW, Wang CC et al (2006) Hot water-extracted Lycium barbarum and Rehmannia glutinosa inhibit proliferation and induce apoptosis of hepatocellular carcinoma cells. World J Gastroenterol 12:4478–4484PubMedGoogle Scholar
  8. Chen Z, Tan BKH, Chan SH (2008) Activation of T lymphocytes by polysaccharide–protein complex from Lycium barbarum L. Int Immunopharmacol 8:1663–1671PubMedCrossRefGoogle Scholar
  9. Chen Z, Lu J, Srinivasan N et al (2009a) Polysaccharide–protein complex from Lycium barbarum L. is a novel stimulus of dendritic cell immunogenicity. J Immunol 182:3503–3509PubMedCrossRefGoogle Scholar
  10. Chen Z, Soo M, Srinivasan N et al (2009b) Activation of macrophages by polysaccharide–protein complex from Lycium barbarum L. Phytother Res 23:1116–1122PubMedCrossRefGoogle Scholar
  11. Dearnaley DP, Khoo VS, Norman AR et al (1999) Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial. Lancet 353:267–272PubMedCrossRefGoogle Scholar
  12. Duan CL, Qiao SY, Wang NL et al (2001) Studies on the active polysaccharides from Lycium barbarum L. Yao Xue Xue Bao 36:196–199PubMedGoogle Scholar
  13. Dunaief JL, Strober BE, Guha S et al (1994) The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79:119–130PubMedCrossRefGoogle Scholar
  14. Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998PubMedCrossRefGoogle Scholar
  15. Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148PubMedCrossRefGoogle Scholar
  16. Elledge SJ (1996) Cell cycle checkpoints: preventing an identity crisis. Science 274:1664–1672PubMedCrossRefGoogle Scholar
  17. Fadeel B, Orrenius S (2005) Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med 258:479–517PubMedCrossRefGoogle Scholar
  18. Gan L, Wang J, Zhang S (2001) Inhibition the growth of human leukemia cells by Lycium barbarum polysaccharide. Wei Sheng Yan Jiu 30:333–335PubMedGoogle Scholar
  19. Gan L, Zhang SH, Liu Q et al (2003) A polysaccharide–protein complex from Lycium barbarum upregulates cytokine expression in human peripheral blood mononuclear cells. Eur J Pharmacol 471:217–222PubMedCrossRefGoogle Scholar
  20. Gan L, Hua Zhang S, Liang Yang X et al (2004) Immunomodulation and antitumor activity by a polysaccharide–protein complex from Lycium barbarum. Int Immunopharmacol 4:563–569PubMedCrossRefGoogle Scholar
  21. Gong H, Shen P, Jin L et al (2005) Therapeutic effects of Lycium barbarum polysaccharide (LBP) on irradiation or chemotherapy-induced myelosuppressive mice. Cancer Biother Radiopharm 20:155–162PubMedCrossRefGoogle Scholar
  22. Gurgan T, Salman C, Demirol A (2008) Pregnancy and assisted reproduction techniques in men and women after cancer treatment. Placenta 29(Suppl B):152–159PubMedCrossRefGoogle Scholar
  23. Hellerstedt BA, Pienta KJ (2002) The current state of hormonal therapy for prostate cancer. CA Cancer J Clin 52:154–179PubMedCrossRefGoogle Scholar
  24. Hijiya N, Hudson MM, Lensing S et al (2007) Cumulative incidence of secondary neoplasms as a first event after childhood acute lymphoblastic leukemia. JAMA 297:1207–1215PubMedCrossRefGoogle Scholar
  25. Hiserodt RD, Adedeji J, John TV et al (2004) Identification of monomenthyl succinate, monomenthyl glutarate, and dimenthyl glutarate in nature by high performance liquid chromatography-tandem mass spectrometry. J Agric Food Chem 52:3536–3541PubMedCrossRefGoogle Scholar
  26. Ho YS, Yu MS, Yik SY et al (2009) Polysaccharides from wolfberry antagonizes glutamate excitotoxicity in rat cortical neurons. Cell Mol Neurobiol 29:1233–1244PubMedCrossRefGoogle Scholar
  27. Huang L, Lin Y, Tian G et al (1998) Isolation, purification and physico-chemical properties of immunoactive constituents from the fruit of Lycium barbarum L. Yao Xue Xue Bao 33:512–516PubMedGoogle Scholar
  28. Inbaraj BS, Lu H, Hung CF et al (2008) Determination of carotenoids and their esters in fruits of Lycium barbarum Linnaeus by HPLC-DAD-APCI-MS. J Pharm Biomed Anal 47:812–818PubMedCrossRefGoogle Scholar
  29. Jing L, Cui G, Feng Q et al (2009) Evaluation of hypoglycemic activity of the polysaccharides extracted from Lycium barbarum. Afr J Tradit Complement Altern Med 6:579–584PubMedGoogle Scholar
  30. Kim H, Jang S, Kim Y et al (2004) Scopoletin suppresses pro-inflammatory cytokines and PGE2 from LPS-stimulated cell line, RAW 264.7 cells. Fitoterapia 75:261–266PubMedCrossRefGoogle Scholar
  31. Kim E, Kwon K, Shin B et al (2005) Scopoletin induces apoptosis in human promyeloleukemic cells, accompanied by activations of nuclear factor [kappa] B and caspase-3. Life Sci 77:824–836PubMedCrossRefGoogle Scholar
  32. Lam AY, Elmer GW, Mohutsky MA (2001) Possible interaction between warfarin and Lycium barbarum L. Ann Pharmacother 35:1199–1201PubMedCrossRefGoogle Scholar
  33. Le K, Chiu F, Ng K (2007) Identification and quantification of antioxidants in Fructus lycii. Food Chem 105:353–363CrossRefGoogle Scholar
  34. Leung H, Hung A, Hui AC et al (2008) Warfarin overdose due to the possible effects of Lycium barbarum L. Food Chem Toxicol 46:1860–1862PubMedCrossRefGoogle Scholar
  35. Liu X, Sun J, Li H et al (2000) Extraction and isolation of active component for inhibiting PC3 cell proliferation in vitro from the fruit of Lycium barbarum L. Zhongguo Zhong Yao Za Zhi 25:481PubMedGoogle Scholar
  36. Liu X, Zhang L, Fu X et al (2001) Effect of scopoletin on PC3 cell proliferation and apoptosis. Acta Pharmacol Sin 22:929PubMedGoogle Scholar
  37. Livingstone LR, White A, Sprouse J et al (1992) Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70:923–935PubMedCrossRefGoogle Scholar
  38. Lu CX, Cheng BQ (1991) Radiosensitizing effects of Lycium barbarum polysaccharide for Lewis lung cancer. Zhong Xi Yi Jie He Za Zhi 11:611–612, 582Google Scholar
  39. Luo Q, Li Z, Yan J et al (2009) Lycium barbarum polysaccharides induce apoptosis in human prostate cancer cells and inhibits prostate cancer growth in a xenograft mouse model of human prostate cancer. J Med Food 12:695–703PubMedCrossRefGoogle Scholar
  40. Mao F, Xiao B, Jiang Z et al (2010) Anticancer effect of Lycium barbarum polysaccharides on colon cancer cells involves G0/G1 phase arrest. Med Oncol 28:121–126PubMedCrossRefGoogle Scholar
  41. Meek AG (1998) Breast radiotherapy and lymphedema. Cancer 83:2788–2797PubMedCrossRefGoogle Scholar
  42. Miao Y, Xiao B, Jiang Z et al (2009) Growth inhibition and cell-cycle arrest of human gastric cancer cells by Lycium barbarum polysaccharide. Med Oncol 27:785–790PubMedCrossRefGoogle Scholar
  43. Mizuno H, Yanoma S, Nishimura G et al (2000) Therapeutic efficiency of IL-2 gene transduced tumor vaccine for head and neck carcinoma. Cancer Lett 152:175–185PubMedCrossRefGoogle Scholar
  44. Oliveira E, Romero M, Silva M et al (2001) Intracellular calcium mobilization as a target for the spasmolytic action of scopoletin. Planta Med 67:605–608PubMedCrossRefGoogle Scholar
  45. Ong ZY, Gibson RJ, Bowen JM et al (2010) Pro-inflammatory cytokines play a key role in the development of radiotherapy-induced gastrointestinal mucositis. Radiat Oncol 5:22PubMedCrossRefGoogle Scholar
  46. Peng X, Tian G (2001) Structural characterization of the glycan part of glycoconjugate LbGp2 from Lycium barbarum L. Carbohydr Res 331:95–99PubMedCrossRefGoogle Scholar
  47. Peng X, Huang J, Qi C et al (2001a) Studies on chemistry and immuno-modulating mechanism of a glycoconjugate from Lycium barbarum L. Chin J Chem 19:1190–1197CrossRefGoogle Scholar
  48. Peng X, Qi C, Tian G et al (2001b) Physico-chemical properties and bioactivities of a glycoconjugate LbGp5B from Lycium barbarum L. Chin J Chem 19:842–846CrossRefGoogle Scholar
  49. Peng Y, Ma C, Li Y et al (2005) Quantification of zeaxanthin dipalmitate and total carotenoids in Lycium fruits (Fructus Lycii). Plant Foods Hum Nutr 60:161–164PubMedCrossRefGoogle Scholar
  50. Qun W, Yang Q, Shi P, et al (1998) Chemical constituents of the Fruit of Lycium barbarum L. J Chin Pharmaceut Sci 7:218–220Google Scholar
  51. Shaw C, Chen C, Hsu C et al (2003) Antioxidant properties of scopoletin isolated from Sinomonium acutum. Phytother Res 17:823–825PubMedCrossRefGoogle Scholar
  52. Sonis ST (1998) Mucositis as a biological process: a new hypothesis for the development of chemotherapy-induced stomatotoxicity. Oral Oncol 34:39–43PubMedCrossRefGoogle Scholar
  53. Tannock IF, Ahles TA, Ganz PA et al (2004) Cognitive impairment associated with chemotherapy for cancer: report of a workshop. J Clin Oncol 22:2233–2239PubMedCrossRefGoogle Scholar
  54. Taylor CW, Nisbet A, McGale P et al (2007) Cardiac exposures in breast cancer radiotherapy: 1950s–1990s. Int J Radiat Oncol Biol Phys 69:1484–1495PubMedCrossRefGoogle Scholar
  55. Toyoda-Ono Y, Maeda M, Nakao M et al (2004) 2-O-(β-d-glucopyranosyl)ascorbic acid, a novel ascorbic acid analogue isolated from Lycium fruit. J Agric Food Chem 52:2092–2096PubMedCrossRefGoogle Scholar
  56. Wanga CC, Changa SC, Chen BH (2009) Chromatographic determination of polysaccharides in Lycium barbarum Linnaeus. Food Chem 116:595–603CrossRefGoogle Scholar
  57. Weller P, Breithaupt DE (2003) Identification and quantification of zeaxanthin esters in plants using liquid chromatography-mass spectrometry. J Agric Food Chem 51:7044–7049PubMedCrossRefGoogle Scholar
  58. Wu HT, He XJ, Hong YK et al (2010) Chemical characterization of Lycium barbarum polysaccharides and its inhibition against liver oxidative injury of high-fat mice. Int J Biol Macromol 46:540–543PubMedCrossRefGoogle Scholar
  59. Xie C, Xu L, Li K et al (2001) Studies on chemical constituents in fruit of Lycium barbarum L. Zhongguo Zhong Yao Za Zhi 26:323–324PubMedGoogle Scholar
  60. Xin YF, Zhou GL, Deng ZY et al (2007) Protective effect of Lycium barbarum on doxorubicin-induced cardiotoxicity. Phytother Res 21:1020–1024PubMedCrossRefGoogle Scholar
  61. Xin YF, Wan LL, Peng JL et al (2010) Alleviation of the acute doxorubicin-induced cardiotoxicity by Lycium barbarum polysaccharides through the suppression of oxidative stress. Food Chem Toxicol 49:259–264PubMedGoogle Scholar
  62. Yin G, Dang Y (2008) Optimization of extraction technology of the Lycium barbarum polysaccharides by Box–Behnken statistical design. Carbohydr Polym 74:603–610CrossRefGoogle Scholar
  63. Zhang M, Chen H, Huang J et al (2005) Effect of Lycium barbarum polysaccharide on human hepatoma QGY7703 cells: inhibition of proliferation and induction of apoptosis. Life Sci 76:2115–2124PubMedCrossRefGoogle Scholar
  64. Zhang Z, Liu X, Wu T et al (2010) Selective suppression of cervical cancer Hela cells by 2-O-β-d-glucopyranosyl-l-ascorbic acid isolated from the fruit of Lycium barbarum L. Cell Biol Toxicol 27(2):107–121Google Scholar
  65. Zhang Z, Liu X, Zhang X et al (2011) Comparative evaluation of the antioxidant effects of the natural vitamin C analog 2-O-β-d-glucopyranosyl-l-ascorbic acid isolated from Goji berry fruit. Arch Pharm Res 34:801–810PubMedCrossRefGoogle Scholar
  66. Zhao C, Li R, He Y et al (1997) Studies on chemistry of Gouqi polysaccharides. Yie Daxue Xuebao 29:231–232, 240Google Scholar
  67. Zhu Y (1998) Chinese Materia Medica Chemistry, Pharmacology and Applications. Harwood Academic Publishers, AmsterdamGoogle Scholar
  68. Zhu J, Zhao LH, Zhao XP et al (2007) Lycium barbarum polysaccharides regulate phenotypic and functional maturation of murine dendritic cells. Cell Biol Int 31:615–619PubMedCrossRefGoogle Scholar
  69. Zhu CP, Zhang SH, Xiao JX (2010) Morphological study on Hela cells apoptosis induced by Lycium barbarum polysaccharides. Food Sci 31:329–334Google Scholar
  70. Zou C, Zhao Q, Chen CX et al (1999) New dopamine derivative from Lycium barbarum. Chin Chem Lett 10:131–132Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Wai-Man Tang
    • 1
  • Enoch Chan
    • 1
  • Ching-Yee Kwok
    • 1
  • Yee-Ki Lee
    • 1
  • Jian-Hong Wu
    • 3
  • Chun-Wai Wan
    • 1
  • Robbie Yat-Kan Chan
    • 2
  • Peter Hoi-Fu Yu
    • 1
    • 3
  • Shun-Wan Chan
    • 1
    • 3
  1. 1.Food Safety and Technology Research Centre, Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHong Kong SARPeople’s Republic of China
  2. 2.Division of Science and Technology, Programme of Food Science and TechnologyBeijing Normal University-Hong Kong Baptist University United International CollegeZhuhaiPeople’s Republic of China
  3. 3.State Key Laboratory of Chinese Medicine and Molecular PharmacologyThe Hong Kong Polytechnic UniversityHong Kong SARPeople’s Republic of China

Personalised recommendations