, Volume 20, Issue 5, pp 289–294 | Cite as

Effect of propolis on mast cells in wound healing

  • Poliana Ribeiro Barroso
  • Ricardo Lopes-Rocha
  • Everton Miguel Ferreira Pereira
  • Sandra Aparecida Marinho
  • João Luiz de Miranda
  • Nádia Lages Lima
  • Flaviana Dornela Verli
Research Article


Wound healing is divided into three phases: inflammatory, proliferative and remodeling. Mast cells participate in all these phases. The aim of the present study was to determine the effects of propolis on the population of mast cells in oral surgical wounds in comparison to the results obtained with dexamethasone. This study was prospective, in vivo, randomized, semiexperimental, quantitative and comparative animal. A circular surgical wound was made on the dorsum of the tongue of 90 hamsters divided into three experimental groups: topical application of 30% propolis alcoholic extract (Group 1); 0.1% dexamethasone in orabase cream (Group 2); and orabase cream alone (Group 3). Applications were performed every 12 h throughout the experiment. The postoperative times for killing of the animals were 1, 3, 7, 14 and 28 days. The Student’s t test for independent samples was employed in the statistical analysis. In the inflammatory phase of healing, propolis caused a greater reduction in the number of mast cells on the edge and in the central region of the surgical wound in comparison to dexamethasone. Moreover, the number of mast cells on day 1 was lower in the central region of the wounds treated with the orabase cream alone in comparison to dexamethasone. In conclusion, the anti-inflammatory action of propolis mediated by mast cells was more effective than dexamethasone in the inflammatory phase of healing.


Propolis Mast cells Wound healing Dexamethasone 



We would like to thank Mr. Leonardo da Cunha Monteiro, from the Laboratory of Pathology of the Universidade Federal dos Vales do Jequitinhonha e Mucuri, for the technical support. This research was supported by the FAPEMIG (APQ-00051-09).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Al-Shaher A, Wallace J, Agarwal S, Bretz W, Baugh D (2004) Effect of propolis on human fibroblasts from the pulp and periodontal ligament. J Endod 30:359–361. doi: 10.1097/00004770-200405000-00011 PubMedCrossRefGoogle Scholar
  2. Azevedo LH, De Sousa SC, Correa L, De Paula Eduardo C, Dagli ML, Romanos G et al (2009) Mast cell concentration in the wound healing process of incisions made by different instruments. Lasers Med Sci 24:585–590. doi: 10.1007/s10103-008-0616-5 PubMedCrossRefGoogle Scholar
  3. Barnes PJ (1998) Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci 94:557–572PubMedGoogle Scholar
  4. Baum CL, Arpey CJ (2005) Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol Surg 31:674–686. doi: 10.1111/j.1524-4725.2005.31612 PubMedCrossRefGoogle Scholar
  5. Bienenstock J, Befus AD, Pearce F, Denburg J, Goodacre R (1982) Mast cell heterogeneity: derivation and function, with emphasis on the intestine. J Allerg Clin Immunol 70:407–412. doi: 10.1016/0091-6749(82)90001-X CrossRefGoogle Scholar
  6. Blonska M, Bronilkowska J, Pietsz G, Czuba ZP, Scheller S, Krol W (2004) Effects of ethanol extract of propolis (EEP) and flavones on inducible gene expression in J774S.1 macrophages. J Ethnopharmacol 91:25–30. doi: 10.1016/j.jep.2003.11.011 Google Scholar
  7. Bonvehı JS, Coll FV, Jorda RE (1994) The composition, active components and bacteriostatic activity of propolis in dietetics. J Am Oil Chem Soc 71:529–532. doi: 10.1007/BF02540666 CrossRefGoogle Scholar
  8. Bradding P (1996) Human mast cell cytokines. Clin Exp Allergy 26:13–19. doi: 10.1111/j.1365-2222.1996.tb00051.x PubMedCrossRefGoogle Scholar
  9. Castaldo S, Capasso F (2002) Propolis, an old remedy used in modern medicine. Fitoterapia 73:1–6. doi: 10.1016/S0367-326X(02)00185-5 CrossRefGoogle Scholar
  10. Chang SW, Chou SF, Yu SY (2010) Dexamethasone reduces mitomycin C-related inflammatory cytokine expression without inducing further cell death in corneal fibroblasts. Wound Repair Regen 18:59–69. doi: 10.1111/j.1524-475X.2009.00551.x PubMedCrossRefGoogle Scholar
  11. Daugsch A, Moraes CS, Fort P, Park YK (2008) Brazilian red propolis-chemical composition and botanical origin. Evid Based Complem Alternat Med 5:435–441. doi: 10.1093/ecam/nem057 CrossRefGoogle Scholar
  12. Egozi EI, Ferreira AM, Burns AL, Gamelli RL, Dipietro LA (2003) Mast cells modulate the inflammatory but not the proliferative response in healing wounds. Wound Repair Regen 11:46–54. doi: 10.1046/j.1524-475X.2003.11108.x PubMedCrossRefGoogle Scholar
  13. Hiromatsu Y, Toda S (2003) Mast cells and angiogenesis. Microsc Res Technol 60:64–69. doi: 10.1002/jemt.10244 CrossRefGoogle Scholar
  14. Iba Y, Shibata A, Kato M, Masukawa T (2004) Possible involvement of mast cells in collagen remodeling in the late phase of cutaneous wound healing in mice. Int Immunopharmacol 4:1873–1880. doi: 10.1016/j.intimp.2004.08.009 PubMedCrossRefGoogle Scholar
  15. Joyce DA, Gimblett G, Steer JH (2001) Targets of glucocorticoid action on TNF-alpha release by macrophages. Inflamm Res 50:337–340. doi: 1023-3830/01/070337-04 PubMedCrossRefGoogle Scholar
  16. Katsambas AD, Karpouzis AJ, Koumantaki-Mathioudaki E, Jorizzo JL (1999) Mastocytosis with skin manifestations: current status. J Eur Acad Dermatol Venereol 13:155–165. doi: 10.1016/S0926-9959(99)00093-8 CrossRefGoogle Scholar
  17. Kitamura Y, Kanakura Y, Sonoda S, Asai H, Nakano T (1987) Mutual phenotypic changes between connective tissue type and mucosal mast cells. Int Arch Allerg Appl Immunol 82:244–248CrossRefGoogle Scholar
  18. Lee TD, Swieter M, Befus AD (1986) Mast cell responses to helminth infection. Parasitol Today 2:186–191. doi: 10.1159/000234198 PubMedCrossRefGoogle Scholar
  19. Marcucci MC (1995) Propolis: chemical composition, biological properties and therapeutic activity. Apidol 26:83–99. doi: 10.1051/apido:19950202 CrossRefGoogle Scholar
  20. McNeil HP (1996) The mast cell and inflammation. Aust N Z J Med 26:216–225PubMedCrossRefGoogle Scholar
  21. Metcalfe DD, Baram D, Mekori YA (1997) Mast cells. Physiol Rev 77:1033–1079. Google Scholar
  22. Moreno NMI, Isla MI, Sampieto AR, Vattuone MA (2000) Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol 71:109–114. doi: 10.1016/S0378-8741(99)00189-0 PubMedCrossRefGoogle Scholar
  23. Nishikori Y, Kakizoe E, Kobayashi Y, Shimoura K, Okunishi H, Dekio S (1998) Skin mast cell promotion of matrix remodeling in burn wound healing in mice: relevance of chymase. Arch Dermatol Res 290:553–560. doi: 10.1007/s004030050351 PubMedCrossRefGoogle Scholar
  24. Norrby K (2002) Mast cells and angiogenesis. APMIS 110:355–371. doi: 10.1034/j.1600-0463.2002.100501.x PubMedCrossRefGoogle Scholar
  25. Oikarinen A (1992) Dermal connective tissue modulated by pharmacologic agents. Int J Dermatol 31:149–156. doi: 10.1111/j.1365-4362.1992.tb03916.x PubMedCrossRefGoogle Scholar
  26. Oishi Y, Fu ZW, Ohnuki Y, Kato H, Noguchi T (2002) Molecular basis of the alteration in skin collagen metabolism in response to in vivo dexamethasone treatment: effects on the synthesis of collagen type I and III, collagenase, and tissue inhibitors of metalloproteinases. Br J Dermatol 147:859–868. doi: 10.1046/j.1365-2133.2002.04949.x PubMedCrossRefGoogle Scholar
  27. Park YK, Koo MH, Sato HH, Contado JL (1995) Survey of some components of propolis which were collected by Apis mellifera in Brazil. Arqui Biol Tecnol 38:1253–1259Google Scholar
  28. Paulino N, Abreu SR, Uto Y, Koyama D, Nagasawa H, Hori H et al (2008) Anti-inflammatory effects of a bioavailable compound, Artepillin C, in Brazilian propolis. Eur J Pharmacol 10:296–301. doi: 10.1016/j.ejphar.2008.02.067 CrossRefGoogle Scholar
  29. Prussin C, Metcalfe DD (2003) IgE, mast cells, basophils, and eosinophils. J Allerg Clin Immunol 111:486–494. doi: 10.1067/mai.2003.120 CrossRefGoogle Scholar
  30. Rhen T, Cidlowski JA (2005) Antiinflammatory action of glucocorticoids-new mechanisms for old drugs. N Engl J of Med 353:1711–1723 pii: 00006024-200510200-00011CrossRefGoogle Scholar
  31. Robbie-Ryan M, Brown M (2002) The role of mast cells in allergy and autoimmunity. Curr Opin Immunol 14:728–733. doi: 10.1016/S0952-7915(02)00394-1 PubMedCrossRefGoogle Scholar
  32. Saklatvala J (2002) Glucocorticoids: do we know how they work? Arthritis Res 4:146–150. Google Scholar
  33. Schulman ES, Post TI, Vigderman RJ (1988) Density heterogeneity of human lung mast cells. J Allerg Clin Immunol 82:78–86. doi: 10.1016/0091-6749(88)90055-3 CrossRefGoogle Scholar
  34. Shanahan F, Denburg JA, Bienenstock J, Befus AD (1984) Mast cell heterogeneity. Can J Physiol Pharmacol 62:734–777. doi: 10.1139/y84-121 PubMedCrossRefGoogle Scholar
  35. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746. doi:  00006024-199909020-00006 PubMedCrossRefGoogle Scholar
  36. Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Method Enzymol 299:152–178. doi: 10.1016/S0076-6879(99)99017-1 CrossRefGoogle Scholar
  37. Song HS, Park TW, Sohn UD, Shin YK, Choi BC, Kim CJ et al (2008) The effect of caffeic acid on wound healing in skin-incised mice. Korean J Physiol Pharmacol 12:343–347. doi: 10.4196/kjpp.2008.12.6.343 PubMedCrossRefGoogle Scholar
  38. Sonmez S, Kirilmaz L, Yucesoy M, Yücel B, Yilmaz B (2005) The effect of bee propolis on oral pathogens and human gingival fibroblasts. J Ethnopharmacol 102:371–376. doi: 10.1016/j.jep.2005.06.035 PubMedCrossRefGoogle Scholar
  39. Teixeira EW, Message D, Negri G, Salatino A, Stringheta PC (2010) Seasonal variation, chemical composition and antioxidant activity of Brazilian propolis samples. eCAM 7:307–315. doi: 10.1093/ecam/nem177 PubMedGoogle Scholar
  40. Walsh LJ (2003) Mast cells and oral inflammation. Crit Rev Oral Biol Med 14:188–198. doi: 10.1177/154411130301400304 PubMedCrossRefGoogle Scholar
  41. Wedemeyer J, Galli SJ (2000) Mast cells and basophils in acquired immunity. Br Med Bull 56:936–955. Google Scholar
  42. Wong ME, Hollinger JO, Pinero GJ (1996) Integrated processes responsible for soft tissue healing. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 82:475–492. doi: 10.1016/S1079-2104(96)80190-9 PubMedCrossRefGoogle Scholar
  43. Xie Y, Gao K, Häkkinen L, Larjava HS (2009) Mice lacking beta 6 integrin in skin show accelerated wound repair in dexamethasone impaired wound healing model. Wound Repair Regen 17:326–339. doi: 10.1111/j.1524-475X.2009.00480.x PubMedCrossRefGoogle Scholar
  44. Yamamoto T, Hartmann K, Eckes B, Krieg T (2001) Role of stem cell factor and monocyte chemoattractant protein-1 in the interaction between fibroblasts and mast cells in fibrosis. J Dermatol Sci 26:106–111. doi: 10.1016/S0923-1811(00)00164-X PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Poliana Ribeiro Barroso
    • 1
  • Ricardo Lopes-Rocha
    • 2
  • Everton Miguel Ferreira Pereira
    • 3
  • Sandra Aparecida Marinho
    • 4
  • João Luiz de Miranda
    • 5
  • Nádia Lages Lima
    • 5
  • Flaviana Dornela Verli
    • 5
  1. 1.Pharmacy Course, Federal University of Valleys do Jequitinhonha and Mucuri, UFVJMDiamantinaBrazil
  2. 2.Post-Graduate Program in DentistryUFVJMDiamantinaBrazil
  3. 3.Dental Course, UFVJMDiamantinaBrazil
  4. 4.Pathology Laboratory, Postgraduate Program in DentistryUFVJMDiamantinaBrazil
  5. 5.Department of Basic SciencesPathology Laboratory, UFVJMDiamantinaBrazil

Personalised recommendations