, Volume 20, Issue 1, pp 1–18 | Cite as

Targeting leukocyte migration and adhesion in Crohn’s disease and ulcerative colitis

  • Saskia Thomas
  • Daniel C. BaumgartEmail author


Crohn’s disease and ulcerative colitis are two chronic inflammatory bowel diseases. Current biologic therapies are limited to blocking tumor necrosis factor alpha. However, some patients are primary non-responders, experience a loss of response, intolerance or side effects defining the urgent unmet need for novel treatments. The rapid recruitment and inappropriate retention of leukocytes is a hallmark of chronic inflammation and a potentially promising therapeutic target. We discuss the immunological mechanisms of leukocyte homing and adhesion in the gut mucosa. The interaction of lymphocytes (CD4+ T-cells, CD8+ T-cells, TREG, TH1, TH17, B-cells), monocytes, macrophages, dendritic cells and granulocytes with endothelial and epithelial cells through integrins [α4β7 (LPAM-1), αEβ7 (HML1 Human Mucosal Lymphocyte Antigen 1), α4β1 (VLA-4), αLβ7, (LFA-1)] and their ligands immunoglobulin superfamily cellular adhesion molecules (CAM) (MAdCAM-1 Mucosal Addressin Cellular Adhesion Molecule 1, ICAM-1 Intercellular Cell Adhesion Molecule, VCAM-1 Vascular Cell Adhesion Molecule), fibronectin as well as chemokine receptors (CCR2, CCR4, CCR5, CCR7, CCR9, CCR10, CXCR3, CX3CR1) and chemokines [CCL5, CCL25 (TECK Thymus Expressed Chemokine), CCL28, CX3CL1, CXCL10, CXCL12] in the process of gut homing is critically reviewed and summarized in scientific cartoons. Moreover, we discuss the clinical trial results of approved and investigational antibodies and small molecules including natalizumab (anti-α4, Tysabri®, Antegren®), AJM300 (anti-α4), etrolizumab (anti-β7, rhuMAb-Beta7), vedolizumab (anti-α4β7, LDP-02, MLN-02, MLN0002), PF-00547659 (anti-MAdCAM), Alicaforsen (anti-ICAM-1), and CCX282-B (anti-CCR9, GSK-1605786, Traficet-EN™) and their risks such as PML reported for natalizumab. Hopefully, the newer gut specific drug designs discussed in this article will have an impact on both efficacy and safety.


Crohn’s disease Ulcerative colitis Inflammatory bowel disease IBD Immunoglobulin superfamily cellular adhesion molecules Integrins Chemokines Adhesion Migration Recruitment Leukocytes T-cells Dendritic cells 



Extracellular matrix


Inflammatory bowel disease


Ulcerative colitis


Crohn’s disease


Dendritic cell(s)




Central nervous system


Intraepithelial lymphocytes


Lamina propria


High endothelial venule


  1. Agace WW (2006) Tissue-tropic effector T cells: generation and targeting opportunities. Nat Rev Immunol 6:682–692PubMedCrossRefGoogle Scholar
  2. Allez M, Vermeire S, Mozziconacci N, Michetti P, Laharie D, Louis E, Bigard MA, Hebuterne X, Treton X, Kohn A, Marteau P, Cortot A, Nichita C, Van AG, Rutgeerts P, Lemann M, Colombel JF (2010) The efficacy and safety of a third anti-TNF monoclonal antibody in Crohn’s disease after failure of two other anti-TNF antibodies. Aliment Pharmacol Ther 31:92–101PubMedCrossRefGoogle Scholar
  3. Annacker O, Coombes JL, Malmstrom V, Uhlig HH, Bourne T, Johansson-Lindbom B, Agace WW, Parker CM, Powrie F (2005) Essential role for CD103 in the T cell-mediated regulation of experimental colitis. J Exp Med 202:1051–1061PubMedCrossRefGoogle Scholar
  4. Aranda R, Sydora BC, McAllister PL, Binder SW, Yang HY, Targan SR, Kronenberg M (1997) Analysis of intestinal lymphocytes in mouse colitis mediated by transfer of CD4+, CD45RBhigh T cells to SCID recipients. J Immunol 158:3464–3473PubMedGoogle Scholar
  5. Barczyk M, Carracedo S, Gullberg D (2010) Integrins. Cell Tissue Res 339:269–280PubMedCrossRefGoogle Scholar
  6. Baumgart DC, Carding SR (2007) Inflammatory bowel disease: cause and immunobiology. Lancet 369:1627–1640PubMedCrossRefGoogle Scholar
  7. Baumgart DC, Sandborn WJ (2007) Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 369:1641–1657PubMedCrossRefGoogle Scholar
  8. Bekker P, Velde A, Pronk I, Keshav S, Hommes D, Hanauer S, Ungashe S, Zheng W, Wright K, Schall T (2007) Traficet-EN (CCX282-B), an orally active inhibitor of chemokine receptor CCR9, for treatment of Crohn’s disease. Inflamm Bowel Dis 13:647Google Scholar
  9. Bekker P, Petryka R, Vanasek T, Niv Y, Marlicz K, Haagen-Nielsen O, Dahelrup J, Dotan I, Compel V, Keshav S, Schall TJ (2008) PROTECT-1, a prospective randomized oral therapy evaluation of CCX282-B (Traficet-EN) in Crohn's disease trial. Inflamm Bowel Dis 14(1):S11 Google Scholar
  10. Bekker P, Keshav S, Johnson D, Schall TJ (2009) PROTECT-1 maintenance phase study results demonstrate efficacy of the intestine-specific chemokine receptor antagonist CCX282-B (Traficet-EN) in Crohn's disease. Inflamm Bowel Dis 15(12):S11Google Scholar
  11. Berlin C, Bargatze RF, Campbell JJ, von Andrian UH, Szabo MC, Hasslen SR, Nelson RD, Berg EL, Erlandsen SL, Butcher EC (1995) Alpha 4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell 80:413–422PubMedCrossRefGoogle Scholar
  12. Bonig H, Wundes A, Chang KH, Lucas S, Papayannopoulou T (2008) Increased numbers of circulating hematopoietic stem/progenitor cells are chronically maintained in patients treated with the CD49d blocking antibody natalizumab. Blood 111:3439–3441PubMedCrossRefGoogle Scholar
  13. Briskin M, Winsor-Hines D, Shyjan A, Cochran N, Bloom S, Wilson J, McEvoy LM, Butcher EC, Kassam N, Mackay CR, Newman W, Ringler DJ (1997) Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am J Pathol 151:97–110PubMedGoogle Scholar
  14. Butcher EC, Picker LJ (1996) Lymphocyte homing and homeostasis. Science 272:60–66PubMedCrossRefGoogle Scholar
  15. Cellier C, Cervoni JP, Patey N, Barbier JP, Brousse N (1997) Cellular adherence and chronic inflammatory bowel diseases. Gastroenterol Clin Biol 21:832–842PubMedGoogle Scholar
  16. Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354:610–621PubMedCrossRefGoogle Scholar
  17. Conner EM, Brand S, Davis JM, Laroux FS, Palombella VJ, Fuseler JW, Kang DY, Wolf RE, Grisham MB (1997) Proteasome inhibition attenuates nitric oxide synthase expression, VCAM-1 transcription and the development of chronic colitis. J Pharmacol Exp Ther 282:1615–1622PubMedGoogle Scholar
  18. Cyster JG (2005) Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 23:127–159PubMedCrossRefGoogle Scholar
  19. del Pilar MM, Cravens PD, Winger R, Frohman EM, Racke MK, Eagar TN, Zamvil SS, Weber MS, Hemmer B, Karandikar NJ, Kleinschmidt-DeMasters BK, Stuve O (2008) Decrease in the numbers of dendritic cells and CD4+ T cells in cerebral perivascular spaces due to natalizumab. Arch Neurol 65:1596–1603CrossRefGoogle Scholar
  20. Delves PJ, Roitt IM (2000a) The immune system. First of two parts. N Engl J Med 343:37–49PubMedCrossRefGoogle Scholar
  21. Delves PJ, Roitt IM (2000b) The immune system. Second of two parts. N Engl J Med 343:108–117PubMedCrossRefGoogle Scholar
  22. Dietz SB, Whitaker-Menezes D, Lessin SR (1996) The role of alpha E beta 7 integrin (CD103) and E-cadherin in epidermotropism in cutaneous T-cell lymphoma. J Cutan Pathol 23:312–318PubMedCrossRefGoogle Scholar
  23. Eksteen B, Adams DH (2010) GSK-1605786, a selective small-molecule antagonist of the CCR9 chemokine receptor for the treatment of Crohn's disease. Idrugs 13(7):472–481 Google Scholar
  24. Eksteen B, Miles AE, Grant AJ, Adams DH (2004) Lymphocyte homing in the pathogenesis of extra-intestinal manifestations of inflammatory bowel disease. Clin Med 4:173–180PubMedGoogle Scholar
  25. Elewaut D, Van DN, De KF, Baeten D, De PP, Van VH, Mielants H, Cuvelier C, Verbruggen G, Veys EM, De VM (1998) Altered expression of alpha E beta 7 integrin on intra-epithelial and lamina propria lymphocytes in patients with Crohn’s disease. Acta Gastroenterol Belg 61:288–294PubMedGoogle Scholar
  26. Engelhardt B (1998) The role of alpha 4-integrin in T lymphocyte migration into the inflamed and noninflamed central nervous system. Curr Top Microbiol Immunol 231:51–64PubMedCrossRefGoogle Scholar
  27. Engelhardt B, Laschinger M, Schulz M, Samulowitz U, Vestweber D, Hoch G (1998) The development of experimental autoimmune encephalomyelitis in the mouse requires alpha4-integrin but not alpha4beta7-integrin. J Clin Invest 102:2096–2105PubMedCrossRefGoogle Scholar
  28. Feagan BG, Greenberg GR, Wild G, Fedorak RN, Pare P, McDonald JW, Cohen A, Bitton A, Baker J, Dube R, Landau SB, Vandervoort MK, Parikh A (2008) Treatment of active Crohn’s disease with MLN0002, a humanized antibody to the alpha4beta7 integrin. Clin Gastroenterol Hepatol 6:1370–1377PubMedCrossRefGoogle Scholar
  29. Feagan BG, Greenberg GR, Wild G, Fedorak RN, Pare P, McDonald JW, Dube R, Cohen A, Steinhart AH, Landau S, Aguzzi RA, Fox IH, Vandervoort MK (2005) Treatment of ulcerative colitis with a humanized antibody to the alpha4beta7 integrin. N Engl J Med 352:2499–2507PubMedCrossRefGoogle Scholar
  30. Gerard C, Rollins BJ (2001) Chemokines and disease. Nat Immunol 2:108–115PubMedCrossRefGoogle Scholar
  31. Ghosh S, Goldin E, Gordon FH, Malchow HA, Rask-Madsen J, Rutgeerts P, Vyhnalek P, Zadorova Z, Palmer T, Donoghue S (2003) Natalizumab for active Crohn’s disease. N Engl J Med 348:24–32PubMedCrossRefGoogle Scholar
  32. GlaxoSmithKline (2010a) A randomised, double-blind, placebo-controlled study to investigate the efficacy and safety of GSK1605786A in the treatment of subjects with moderately-to-severely active Crohn’s disease. GlaxoSmithKline Clinical study register. Accessed 1 December 2010
  33. GlaxoSmithKline (2010b) A single dose, randomized, five-period crossover study to assess the relative bioavailability of four new formulations of the CCR9 receptor antagonist GSK1605786A (CCX282) in healthy male and female subjects. GlaxoSmithKline Clinical study register. Accessed 1 May 2010
  34. GlaxoSmithKline (2011) A 52 week randomised, double-blind, placebo-controlled study to investigate the efficacy and safety of GSK1605786A in the maintenance of remission in subjects with Crohn’s disease. GlaxoSmithKline Clinical study register. Accessed 1 April 2011
  35. Glover JM, Leeds JM, Mant TG, Amin D, Kisner DL, Zuckerman JE, Geary RS, Levin AA, Shanahan WR Jr (1997) Phase I safety and pharmacokinetic profile of an intercellular adhesion molecule-1 antisense oligodeoxynucleotide (ISIS 2302). J Pharmacol Exp Ther 282:1173–1180PubMedGoogle Scholar
  36. Gonzalez-Amaro R, Mittelbrunn M, Sanchez-Madrid F (2005) Therapeutic anti-integrin (alpha4 and alphaL) monoclonal antibodies: two-edged swords? Immunology 116:289–296PubMedCrossRefGoogle Scholar
  37. Gordon FH, Hamilton MI, Donoghue S, Greenlees C, Palmer T, Rowley-Jones D, Dhillon AP, Amlot PL, Pounder RE (2002) A pilot study of treatment of active ulcerative colitis with natalizumab, a humanized monoclonal antibody to alpha-4 integrin. Aliment Pharmacol Ther 16:699–705PubMedCrossRefGoogle Scholar
  38. Gordon FH, Lai CW, Hamilton MI, Allison MC, Srivastava ED, Fouweather MG, Donoghue S, Greenlees C, Subhani J, Amlot PL, Pounder RE (2001) A randomized placebo-controlled trial of a humanized monoclonal antibody to alpha4 integrin in active Crohn’s disease. Gastroenterology 121:268–274PubMedCrossRefGoogle Scholar
  39. Handel TM, Domaille PJ (1996) Heteronuclear (1H, 13C, 15N) NMR assignments and solution structure of the monocyte chemoattractant protein-1 (MCP-1) dimer. Biochemistry 35:6569–6584PubMedCrossRefGoogle Scholar
  40. Henninger DD, Panes J, Eppihimer M, Russell J, Gerritsen M, Anderson DC, Granger DN (1997) Cytokine-induced VCAM-1 and ICAM-1 expression in different organs of the mouse. J Immunol 158:1825–1832PubMedGoogle Scholar
  41. Hesterberg PE, Winsor-Hines D, Briskin MJ, Soler-Ferran D, Merrill C, Mackay CR, Newman W, Ringler DJ (1996) Rapid resolution of chronic colitis in the cotton-top tamarin with an antibody to a gut-homing integrin alpha 4 beta 7. Gastroenterology 111:1373–1380PubMedCrossRefGoogle Scholar
  42. Hetzel DJ, Badov D, Connell W, Edwards S, Gibson PR, Leong R, Macrae F, Mitchell B, Radford-Smith G, Bekker P, Schall TJ (2009) CCX282-B (TRAFICET-EN (TM)), a chemokine receptor CCR9 selective antagonist, is an effective treatment for patients with moderate to severe Crohn’s disease. J Gastroenterol Hepatol 24:A312–A313Google Scholar
  43. Humphries MJ (1990) The molecular basis and specificity of integrin-ligand interactions. J Cell Sci 97(Pt 4):585–592PubMedGoogle Scholar
  44. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687PubMedCrossRefGoogle Scholar
  45. Iliev ID, Matteoli G, Rescigno M (2007) The yin and yang of intestinal epithelial cells in controlling dendritic cell function. J Exp Med 204:2253–2257PubMedCrossRefGoogle Scholar
  46. Ito H, Kihara H, Andou A, Ejima C, Ono M, Tanaka Y, Suzuki M, Murata M (2005) Oral treatment with novel alpha4 integrin blocker, AJM300, is efficacious in a rat model of DNBS-induced colitis. Gastroenterology 128:A200Google Scholar
  47. Jaensson E, Uronen-Hansson H, Pabst O, Eksteen B, Tian J, Coombes JL, Berg PL, Davidsson T, Powrie F, Johansson-Lindbom B, Agace WW (2008) Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J Exp Med 205:2139–2149PubMedCrossRefGoogle Scholar
  48. Kato S, Hokari R, Matsuzaki K, Iwai A, Kawaguchi A, Nagao S, Miyahara T, Itoh K, Ishii H, Miura S (2000) Amelioration of murine experimental colitis by inhibition of mucosal addressin cell adhesion molecule-1. J Pharmacol Exp Ther 295:183–189PubMedGoogle Scholar
  49. Kawachi S, Jennings S, Panes J, Cockrell A, Laroux FS, Gray L, Perry M, van der HH, Balish E, Granger DN, Specian RA, Grisham MB (2000) Cytokine and endothelial cell adhesion molecule expression in interleukin-10-deficient mice. Am J Physiol Gastrointest Liver Physiol 278:G734–G743Google Scholar
  50. Keshav S, Petryka R, Vanask T, Niv Y, Marlicz K, Haagen-Nielsen O, Machado M, Dahlerup J, Sschreiber S, Bekker P, Sankar S, Schall TJ (2007a) PROTECT-1: A prospective randomized trial of CCX282-B (Traficet-EN), a novel oral therapy targeting chemokine receptor 9 in Crohn's disease. Am J Gastroenterol 102:S475Google Scholar
  51. Keshav S, Ungashe S, Zheng W, Belker P, Wright K, Schall TJ (2007b) Ccx282-B, an orally active inhibitor of chemokine receptor Ccr9, shows anti-inflammatory and clinical activity in the treatment of Crohn’s disease. Gastroenterology 132:A157Google Scholar
  52. Keshav S, Johnson D, Bekker P, Schall TJ (2009) PROTECT-1 study demonstrated efficacy of the intestine-specific chemokine receptor antagonist CCX282-B (Traficet-EN) in treatment of patients with moderate to severe Crohn's disease. Gastroenterology 136(5):A65 Google Scholar
  53. Kim CH, Broxmeyer HE (1999) Chemokines: signal lamps for trafficking of T and B cells for development and effector function. J Leukoc Biol 65:6–15PubMedGoogle Scholar
  54. Kleinschmidt-DeMasters BK, Tyler KL (2005) Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N Engl J Med 353:369–374PubMedCrossRefGoogle Scholar
  55. Koizumi M, King N, Lobb R, Benjamin C, Podolsky DK (1992) Expression of vascular adhesion molecules in inflammatory bowel disease. Gastroenterology 103:840–847PubMedGoogle Scholar
  56. Kothary N, Diak IL, Brinker A, Bezabeh S, Avigan M, Pan GD (2011) Progressive multifocal leukoencephalopathy associated with efalizumab use in psoriasis patients. J Am Acad Dermatol 65:546–551Google Scholar
  57. Kroneld U, Jonsson R, Carlsten H, Bremell T, Johannessen AC, Tarkowski A (1998) Expression of the mucosal lymphocyte integrin alphaEbeta7 and its ligand E-cadherin in salivary glands of patients with Sjogren’s syndrome. Scand J Rheumatol 27:215–218PubMedCrossRefGoogle Scholar
  58. Kunkel EJ, Campbell DJ, Butcher EC (2003) Chemokines in lymphocyte trafficking and intestinal immunity. Microcirculation 10:313–323PubMedGoogle Scholar
  59. Langer-Gould A, Atlas SW, Green AJ, Bollen AW, Pelletier D (2005) Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N Engl J Med 353:375–381PubMedCrossRefGoogle Scholar
  60. Lazarovits AI, Moscicki RA, Kurnick JT, Camerini D, Bhan AK, Baird LG, Erikson M, Colvin RB (1984) Lymphocyte activation antigens. I. A monoclonal antibody, anti-Act I, defines a new late lymphocyte activation antigen. J Immunol 133:1857–1862PubMedGoogle Scholar
  61. Lee TW, Fedorak RN (2010) Tumor necrosis factor-alpha monoclonal antibodies in the treatment of inflammatory bowel disease: clinical practice pharmacology. Gastroenterol Clin North Am 39:543–557PubMedCrossRefGoogle Scholar
  62. Lefrancois L, Parker CM, Olson S, Muller W, Wagner N, Schon MP, Puddington L (1999) The role of beta7 integrins in CD8 T cell trafficking during an antiviral immune response. J Exp Med 189:1631–1638PubMedCrossRefGoogle Scholar
  63. Lehmann J, Huehn J, de la RM, Maszyna F, Kretschmer U, Krenn V, Brunner M, Scheffold A, Hamann A (2002) Expression of the integrin alpha Ebeta 7 identifies unique subsets of CD25+ as well as. Proc Natl Acad Sci USA 99:13031–13036Google Scholar
  64. Ludviksson BR, Strober W, Nishikomori R, Hasan SK, Ehrhardt RO (1999) Administration of mAb against alpha E beta 7 prevents and ameliorates immunization-induced colitis in IL-2−/− mice. J Immunol 162:4975–4982PubMedGoogle Scholar
  65. Luster AD (1998) Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med 338:436–445PubMedCrossRefGoogle Scholar
  66. Maruyama S, Kageyama S, Sugiura T, Suzuki M (2007) An orally active Alpha4 integrin antagonist Ajm300 attenuates inflammatory cell infiltration and exacerbation of DSS-induced chronic colitis in rats. Gastroenterology 132:A229Google Scholar
  67. McDonald SA, Palmen MJ, Van Rees EP, MacDonald TT (1997) Characterization of the mucosal cell-mediated immune response in IL-2 knockout mice before and after the onset of colitis. Immunology 91:73–80PubMedCrossRefGoogle Scholar
  68. McIntyre TM, Prescott SM, Weyrich AS, Zimmerman GA (2003) Cell–cell interactions: leukocyte–endothelial interactions. Curr Opin Hematol 10:150–158PubMedCrossRefGoogle Scholar
  69. Millennium Pharmaceuticals, Inc (2008) Phase 2 study of the safety and efficacy of LDP-02 in mildly to moderately active Crohn’s patients. Accessed on 8 April 2008
  70. Millennium Pharmaceuticals, Inc (2010a) Long term safety of MLN0002 in patients with ulcerative colitis and Crohn’s Disease. Accessed on 22 December 2010
  71. Millennium Pharmaceuticals, Inc (2010b) Study of MLN0002 following multiple intravenous doses in patients with ulcerative colitis. Accessed on 19 August 2010
  72. Millennium Pharmaceuticals, Inc (2011a) An open-label study of vedolizumab (MLN0002) in patients with ulcerative colitis and Crohn’s disease. Accessed on 13 July 2011
  73. Millennium Pharmaceuticals, Inc (2011b) Study of vedolizumab (MLN0002) in patients with moderate to severe Crohn’s disease. Accessed on 17 March 2011
  74. Millennium Pharmaceuticals, Inc (2011c) Study of vedolizumab (MLN0002) in patients with moderate to severe ulcerative colitis. Accessed on 17 March 2011
  75. Millennium Pharmaceuticals, Inc (2011d) Study of vedolizumab in patients with moderate to severe Crohn’s Disease. Accessed on 5 July 2011
  76. Miner PB Jr, Geary RS, Matson J, Chuang E, Xia S, Baker BF, Wedel MK (2006a) Bioavailability and therapeutic activity of alicaforsen (ISIS 2302) administered as a rectal retention enema to subjects with active ulcerative colitis. Aliment Pharmacol Ther 23:1427–1434PubMedCrossRefGoogle Scholar
  77. Miner PB Jr, Wedel MK, Xia S, Baker BF (2006b) Safety and efficacy of two dose formulations of alicaforsen enema compared with mesalazine enema for treatment of mild to moderate left-sided ulcerative colitis: a randomized, double-blind, active-controlled trial. Aliment Pharmacol Ther 23:1403–1413PubMedCrossRefGoogle Scholar
  78. Mora JR (2008) Homing imprinting and immunomodulation in the gut: role of dendritic cells and retinoids. Inflamm Bowel Dis 14:275–289PubMedCrossRefGoogle Scholar
  79. Muller WA (2003) Leukocyte–endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 24:327–334PubMedGoogle Scholar
  80. Nakamura S, Ohtani H, Watanabe Y, Fukushima K, Matsumoto T, Kitano A, Kobayashi K, Nagura H (1993) In situ expression of the cell adhesion molecules in inflammatory bowel disease. Evidence of immunologic activation of vascular endothelial cells. Lab Invest 69:77–85PubMedGoogle Scholar
  81. Olson TS, Bamias G, Naganuma M, Rivera-Nieves J, Burcin TL, Ross W, Morris MA, Pizarro TT, Ernst PB, Cominelli F, Ley K (2004) Expanded B cell population blocks regulatory T cells and exacerbates ileitis in a murine model of Crohn disease. J Clin Invest 114:389–398PubMedGoogle Scholar
  82. Oshitani N, Campbell A, Bloom S, Kitano A, Kobayashi K, Jewell DP (1995) Adhesion molecule expression on vascular endothelium and nitroblue tetrazolium reducing activity in human colonic mucosa. Scand J Gastroenterol 30:915–920PubMedCrossRefGoogle Scholar
  83. Pan J, Kunkel EJ, Gosslar U, Lazarus N, Langdon P, Broadwell K, Vierra MA, Genovese MC, Butcher EC, Soler D (2000) A novel chemokine ligand for CCR10 and CCR3 expressed by epithelial cells in mucosal tissues. J Immunol 165:2943–2949PubMedGoogle Scholar
  84. Panes J, Granger DN (1996) Neutrophils generate oxygen free radicals in rat mesenteric microcirculation after abdominal irradiation. Gastroenterology 111:981–989PubMedCrossRefGoogle Scholar
  85. Panes J, Granger DN (1998) Leukocyte-endothelial cell interactions: molecular mechanisms and implications in gastrointestinal disease. Gastroenterology 114:1066–1090PubMedCrossRefGoogle Scholar
  86. Panes J, Perry M, Granger DN (1999) Leukocyte-endothelial cell adhesion: avenues for therapeutic intervention. Br J Pharmacol 126:537–550PubMedCrossRefGoogle Scholar
  87. Panes J, Perry MA, Anderson DC, Manning A, Leone B, Cepinskas G, Rosenbloom CL, Miyasaka M, Kvietys PR, Granger DN (1995) Regional differences in constitutive and induced ICAM-1 expression in vivo. Am J Physiol 269:H1955–H1964PubMedGoogle Scholar
  88. Pang M, Abe T, Fujihara T, Mori S, Tsuzaka K, Amano K, Koide J, Takeuchi T (1998) Up-regulation of alphaEbeta7, a novel integrin adhesion molecule, on T cells from systemic lupus erythematosus patients with specific epithelial involvement. Arthritis Rheum 41:1456–1463PubMedCrossRefGoogle Scholar
  89. Parish CR (2006) The role of heparan sulphate in inflammation. Nat Rev Immunol 6:633–643PubMedCrossRefGoogle Scholar
  90. Peyrin-Biroulet L, Deltenre P, de SN, Branche J, Sandborn WJ, Colombel JF (2008) Efficacy and safety of tumor necrosis factor antagonists in Crohn’s disease: meta-analysis of placebo-controlled trials. Clin Gastroenterol Hepatol 6:644–653Google Scholar
  91. Pfizer (2009) A study to investigate the safety and efficacy properties of PF-00547659 in patients with active ulcerative colitis. Accessed on 25 June 2009
  92. Pfizer (2011a) Evaluation of the effect of the study drug (PF-00547659) on white blood cells circulating in the spinal fluid around the brain and spinal column in patients with Crohn’s disease who have failed or did not tolerate anti-TNF treatment. Accessed on 30 June 2011
  93. Pfizer (2011b) Study to test whether PF-00547659 is safe and improves disease symptoms in patients with Crohn’s disease that have not responded to other treatments. Accessed on 15 July 2011
  94. Pfizer (2011c) This is a safety study to monitor longer-term treatment with PF-00547659. Accessed on 5 June 2011
  95. Picarella D, Hurlbut P, Rottman J, Shi X, Butcher E, Ringler DJ (1997) Monoclonal antibodies specific for beta 7 integrin and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) reduce inflammation in the colon of scid mice reconstituted with CD45RBhigh CD4+ T cells. J Immunol 158:2099–2106PubMedGoogle Scholar
  96. Plow EF, Haas TA, Zhang L, Loftus J, Smith JW (2000) Ligand binding to integrins. J Biol Chem 275:21785–21788PubMedCrossRefGoogle Scholar
  97. Pooley N, Ghosh L, Sharon P (1995) Up-regulation of E-selectin and intercellular adhesion molecule-1 differs between Crohn’s disease and ulcerative colitis. Dig Dis Sci 40:219–225PubMedCrossRefGoogle Scholar
  98. Pullen N, Molloy E, Carter D, Syntin P, Clemo F, Finco-Kent D, Reagan W, Zhao S, Kawabata T, Sreckovic S (2009) Pharmacological characterization of PF-00547659, an anti-human MAdCAM monoclonal antibody. Br J Pharmacol 157:281–293PubMedCrossRefGoogle Scholar
  99. Rihs S, Walker C, Virchow JC Jr, Boer C, Kroegel C, Giri SN, Braun RK (1996) Differential expression of alpha E beta 7 integrins on bronchoalveolar lavage T lymphocyte subsets: regulation by alpha 4 beta 1-integrin crosslinking and TGF-beta. Am J Respir Cell Mol Biol 15:600–610PubMedGoogle Scholar
  100. Rivera-Nieves J, Ho J, Bamias G, Ivashkina N, Ley K, Oppermann M, Cominelli F (2006) Antibody blockade of CCL25/CCR9 ameliorates early but not late chronic murine ileitis. Gastroenterology 131:1518–1529PubMedCrossRefGoogle Scholar
  101. Rot A, von Andrian UH (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22:891–928PubMedCrossRefGoogle Scholar
  102. Rutgeerts PJ, Fedorak RN, Hommes DW, Sturm A, Baumgan DC, Bressler B, Schreiber S, Mansfield JC, Williams M, Keir ME, Arian BS, Luca D, O’Bryne S (2011) A phase I study of rHuMab Beta7 in moderate to severe ulcerative colitis (UC). Gastroenterology 140:S125Google Scholar
  103. Salmi M, Jalkanen S (2005) Lymphocyte homing to the gut: attraction, adhesion, and commitment. Immunol Rev 206:100–113PubMedCrossRefGoogle Scholar
  104. Sandborn WJ, Colombel JF, Enns R, Feagan BG, Hanauer SB, Lawrance IC, Panaccione R, Sanders M, Schreiber S, Targan S, van DS, Goldblum R, Despain D, Hogge GS, Rutgeerts P (2005) Natalizumab induction and maintenance therapy for Crohn’s disease. N Engl J Med 353:1912–1925Google Scholar
  105. Sandborn WJ, Yednock TA (2003) Novel approaches to treating inflammatory bowel disease: targeting alpha-4 integrin. Am J Gastroenterol 98:2372–2382PubMedCrossRefGoogle Scholar
  106. Sans M, Panes J, Ardite E, Elizalde JI, Arce Y, Elena M, Palacin A, Fernandez-Checa JC, Anderson DC, Lobb R, Pique JM (1999) VCAM-1 and ICAM-1 mediate leukocyte–endothelial cell adhesion in rat experimental colitis. Gastroenterology 116:874–883PubMedCrossRefGoogle Scholar
  107. Schlickum S, Sennefelder H, Friedrich M, Harms G, Lohse MJ, Kilshaw P, Schon MP (2008) Integrin alpha E(CD103)beta 7 influences cellular shape and motility in a ligand-dependent fashion. Blood 112:619–625PubMedCrossRefGoogle Scholar
  108. Schreiber S, Nikolaus S, Malchow H, Kruis W, Lochs H, Raedler A, Hahn EG, Krummenerl T, Steinmann G, German ICAM (2001) Absence of efficacy of subcutaneous antisense ICAM-1 treatment of chronic active Crohn’s disease. Gastroenterology 120:1339–1346PubMedCrossRefGoogle Scholar
  109. Schweighoffer T, Tanaka Y, Tidswell M, Erle DJ, Horgan KJ, Luce GE, Lazarovits AI, Buck D, Shaw S (1993) Selective expression of integrin alpha 4 beta 7 on a subset of human CD4+ memory T cells with Hallmarks of gut-trophism. J Immunol 151:717–729PubMedGoogle Scholar
  110. Shimaoka M, Springer TA (2003) Therapeutic antagonists and conformational regulation of integrin function. Nat Rev Drug Discov 2:703–716PubMedCrossRefGoogle Scholar
  111. Soler D, Chapman T, Yang LL, Wyant T, Egan R, Fedyk ER (2009) The binding specificity and selective antagonism of vedolizumab, an anti-alpha4beta7 integrin therapeutic antibody in development for inflammatory bowel diseases. J Pharmacol Exp Ther 330:864–875PubMedCrossRefGoogle Scholar
  112. Soriano A, Salas A, Salas A, Sans M, Gironella M, Elena M, Anderson DC, Pique JM, Panes J (2000) VCAM-1, but not ICAM-1 or MAdCAM-1, immunoblockade ameliorates DSS-induced colitis in mice. Lab Invest 80:1541–1551PubMedCrossRefGoogle Scholar
  113. Stefanich EG, Danilenko DM, Wang H, O’Byrne S, Erickson R, Gelzleichter T, Hiraragi H, Chiu H, Ivelja S, Jeet S, Gadkari S, Hwang O, Fuh F, Looney C, Howell K, Albert V, Balazs M, Refino C, Fong S, Iyer S, Williams M (2011) A humanized monoclonal antibody targeting the beta7 integrin selectively blocks intestinal homing of T lymphocytes. Br J Pharmacol 162:1855–1870PubMedCrossRefGoogle Scholar
  114. Sugiura T, Kageyama S, Kuribayashi K, Suzuki M (2009) An orally active alpha4 integrin antagonist AJM300 prevents the development of experimental colitis induced by adoptive transfer of IL-10 deficient CD4+ T cells in mice. Gastroenterology 136:A402CrossRefGoogle Scholar
  115. Takazoe M, Watanabe M, Kawaguchi T, Matsumoto T, Oshitani N, Hiwatashi N, Hibi T (2009) Oral alpha-4 integrin inhibitor (AJM300) in patients with active Crohn’s disease—a randomized, double-blind, placebo-controlled trial. Gastroenterology 136:A181CrossRefGoogle Scholar
  116. Tan CS, Koralnik IJ (2010) Progressive multifocal leukoencephalopathy and other disorders caused by JC virus: clinical features and pathogenesis. Lancet Neurol 9:425–437PubMedCrossRefGoogle Scholar
  117. Targan SR, Feagan BG, Fedorak RN, Lashner BA, Panaccione R, Present DH, Spehlmann ME, Rutgeerts PJ, Tulassay Z, Volfova M, Wolf DC, Hernandez C, Bornstein J, Sandborn WJ (2007) Natalizumab for the treatment of active Crohn’s disease: results of the ENCORE Trial. Gastroenterology 132:1672–1683PubMedCrossRefGoogle Scholar
  118. Tidswell M, Pachynski R, Wu SW, Qiu SQ, Dunham E, Cochran N, Briskin MJ, Kilshaw PJ, Lazarovits AI, Andrew DP, Butcher EC, Yednock TA, Erle DJ (1997) Structure-function analysis of the integrin beta 7 subunit: identification of domains involved in adhesion to MAdCAM-1. J Immunol 159:1497–1505PubMedGoogle Scholar
  119. Trollmo C, Nilsson IM, Sollerman C, Tarkowski A (1996) Expression of the mucosal lymphocyte integrin alpha E beta 7 and its ligand E-cadherin in the synovium of patients with rheumatoid arthritis. Scand J Immunol 44:293–298PubMedGoogle Scholar
  120. Ungashe SB, Wei Z, Rubas W, Lai NL, Ertl L, Baumgart T, Wang H L, Miao ZH, Hor SY, Premack B, Moore J, Sullivan E, Pennell A, Keshav S, Sanders M, Howard M, Wright JJK, Bekker P, Schall TJ (2008) MEDI 167-discovery of the highly potent, selective and orally bioavailable CCR9 antagonist CCX282-B. Abstr Pap Am Chem Soc 235 Google Scholar
  121. Uss E, Rowshani AT, Hooibrink B, Lardy NM, van Lier RA, ten Berge IJ (2006) CD103 is a marker for alloantigen-induced regulatory CD8+ T cells. J Immunol 177:2775–2783Google Scholar
  122. Van Assche G, Van RM, Sciot R, Dubois B, Vermeire S, Noman M, Verbeeck J, Geboes K, Robberecht W, Rutgeerts P (2005) Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn’s disease. N Engl J Med 353:362–368PubMedCrossRefGoogle Scholar
  123. van der Flier A, Sonnenberg A (2001) Function and interactions of integrins. Cell Tissue Res 305:285–298PubMedCrossRefGoogle Scholar
  124. van Deventer SJ, Wedel MK, Baker BF, Xia S, Chuang E, Miner PB Jr (2006) A phase II dose ranging, double-blind, placebo-controlled study of alicaforsen enema in subjects with acute exacerbation of mild to moderate left-sided ulcerative colitis. Aliment Pharmacol Ther 23:1415–1425PubMedCrossRefGoogle Scholar
  125. Vermeire S, Ghosh S, Panes J, Dahlerup JF, Luegering A, Sirotiakova J, Strauch U, Burgess G, Spanton J, Martin SW, Niezychowski W (2011) The mucosal addressin cell adhesion molecule antibody PF-00547,659 in ulcerative colitis: a randomised study. Gut 60:1068–1075Google Scholar
  126. von Andrian UH, Engelhardt B (2003) Alpha4 integrins as therapeutic targets in autoimmune disease. N Engl J Med 348:68–72CrossRefGoogle Scholar
  127. von Andrian UH, Mackay CR (2000) T-cell function and migration. Two sides of the same coin. N Engl J Med 343:1020–1034CrossRefGoogle Scholar
  128. Walters MJ, Wang Y, Lai N, Baumgart T, Zhao BN, Dairaghi DJ, Bekker P, Ertl LS, Penfold M ET, Jaen JC, Keshav S, Wendt E, Pennell A, Ungashe S, Wei Z, Wright JJK, Schall TJ (2010) Characterization of CCX282-B, an orally bioavailable antagonist of the CCR9 chemokine receptor, for treatment of inflammatory bowel disease. J Pharmacol Exp Ther 335(1):61–69Google Scholar
  129. Williamson KD, Hetzel DJ, Badov D, Connell W, Edwards S, Gibson PR, Leong RWL, Macrae F, Mitchell B, Radford-Smith G, Bekker P, Schall TJ (2010) One-year results from protect-1 study of intestine-specific chemokine receptor antagonist CCX282-B in Crohn's disease. J Gastroenterol Hepatol 25:A96 Google Scholar
  130. Yacyshyn BR, Bowen-Yacyshyn MB, Jewell L, Tami JA, Bennett CF, Kisner DL, Shanahan WR Jr (1998) A placebo-controlled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohn’s disease. Gastroenterology 114:1133–1142PubMedCrossRefGoogle Scholar
  131. Yacyshyn BR, Chey WY, Goff J, Salzberg B, Baerg R, Buchman AL, Tami J, Yu R, Gibiansky E, Shanahan WR, ISIS 2302-CS9 Investigators (2002) Double blind, placebo controlled trial of the remission inducing and steroid sparing properties of an ICAM-1 antisense oligodeoxynucleotide, alicaforsen (ISIS 2302), in active steroid dependent Crohn’s disease. Gut 51:30–36PubMedCrossRefGoogle Scholar
  132. Yadav R, Larbi KY, Young RE, Nourshargh S (2003) Migration of leukocytes through the vessel wall and beyond. Thromb Haemost 90:598–606PubMedGoogle Scholar
  133. Yousry TA, Major EO, Ryschkewitsch C, Fahle G, Fischer S, Hou J, Curfman B, Miszkiel K, Mueller-Lenke N, Sanchez E, Barkhof F, Radue EW, Jager HR, Clifford DB (2006) Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N Engl J Med 354:924–933PubMedCrossRefGoogle Scholar
  134. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127PubMedCrossRefGoogle Scholar
  135. Zohren F, Toutzaris D, Klarner V, Hartung HP, Kieseier B, Haas R (2008) The monoclonal anti-VLA-4 antibody natalizumab mobilizes CD34+ hematopoietic progenitor cells in humans. Blood 111:3893–3895PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Division of Gastroenterology and Hepatology, Department of Medicine, Charité Medical Center, Virchow HospitalMedical School of the Humboldt University of BerlinBerlinGermany

Personalised recommendations