Inflammopharmacology

, Volume 21, Issue 1, pp 21–30

Analgesic and anti-inflammatory effect of aqueous extract of the stem bark of Allanblackia gabonensis (Guttiferae)

  • Edwige V. Ymele
  • A. Bertrand Dongmo
  • Théophile Dimo
Research Article

Abstract

Allanblackiagabonensis (Guttiferae) is a plant used in the African traditional medicine as remedies against pain, rheumatism, inflammations. In the present work, the analgesic effect of aqueous extract has been evaluated using acetic acid, formalin, hot-plate test, tail immersion and paw-pressure test. The anti-inflammatory effect of this extract was also investigated on carrageenan, histamine or serotonin induced by paw oedema. Aqueous extract of stem bark of A. gabonensis administrated p.o. showed significant activity against paw oedema induced by carrageenan, with a maximum percentage of inhibition reaching the 74.01% at the preventive test at a dose of 200 mg/kg. A. gabonensis exhibited a significant reduction of paw oedema induced by both histamine and serotonin with a maximal inhibition of 56.94% (200 mg/kg) and 40.83% (100 mg/kg), respectively. It showed significant protective effects against chemical stimuli (acetic acid and formalin) in the mouse. Administered orally at the doses of 100–400 mg/kg, exhibited protective effect of at least 69.78% on the pain induced by acetic acid and also reduced first (67.18% at 200 mg/kg) and second (83.87% at 400 mg/kg) phase of pain-induced par formalin. It also produced a significant increase of the threshold of sensitivity to pressure and hot plate-induced pain in the rats. These results suggest a peripheral and central analgesic activities as well as an anti-inflammatory effect of the stem bark of A.gabonensis.

Keywords

Allanblackia gabonensis Antiinflammatory Analgesic 

References

  1. Asongalem EA, Foyet HS, Ngogang J et al (2004) Analgesic and anti inflammatory activities of Erigeron floribundeus. J Ethnopharmacol 91:301–308PubMedCrossRefGoogle Scholar
  2. Aydin S, Demir T, Ozturk Y et al (1999) Analgesic activity of Nepeta italica L. Phytother Res 13:20–23PubMedCrossRefGoogle Scholar
  3. Azebaze AGB, Meyer M, Bodo B et al (2004) A new polyisoprenylated xanthones from the stem bark of Allanblackia monticola. Phytochemistry 65:2789–2795PubMedCrossRefGoogle Scholar
  4. Azebaze AGB, Meyer M, Valentin A et al (2006) Prenylated xanthone derivatives with activity from Allanblackia monticola Staner L.C. Chem Pharm Bull 54:111–113PubMedCrossRefGoogle Scholar
  5. Azebaze AGB, Ouahouo BMW, Vardamides JC, Valentin A, Kuete V, Acebey L, Beng VP, Nkengfack AE, Meyer M (2008) Antimicrobial and antileishmanial xanthones from the stem bark of Allanblackia gabonensis Chem Nat Comp 44:582–587Google Scholar
  6. Bamps P (1970) Flore du Congo, Rwanda et Burundi, Spermaphytes Guttiferae 40Google Scholar
  7. Bentley GA, Newtown SH, Starr J (1999) Analgesic activity of Nepeta italica L. Phytother Res 13:20–23CrossRefGoogle Scholar
  8. Covino BG, Dubner R, Gybels J et al (1980) IASP committee for research and ethical issues ethical standards for investigations of experimental pain in animals. Pain 9:141143Google Scholar
  9. Deraedt R, Jougney S, Benzoni J et al (1980) Release of prostaglandins E and F in algogenic reaction and its inhibition. Eur J Pharmacol 61:17–24PubMedCrossRefGoogle Scholar
  10. Dongmo AB, Salah M, Kamanyi A et al (2003) Anti-inflammatory and analgesic properties of the stem bark extract of Mitragyna ciliata in rats. J Ethnopharmacol 84:17–21PubMedCrossRefGoogle Scholar
  11. Dongmo AB, Salah M, Kamanyi A et al (2004) Vasodilating properties of the stem bark extract of Mitragyna ciliata in rats and guinea pigs. Phytother Res 18:36–39PubMedCrossRefGoogle Scholar
  12. Dongmo AB, Ngueefack TB, Lacaille-Doubois MA (2005) Anti-nociceptive and anti-inflammatory activities of Acacia pennata Wild (Mimosaceae). J Ethnopharmacol 98:201–206PubMedCrossRefGoogle Scholar
  13. Fung HB, Kirschenbaun HL (1999) Selective cyclooxygenase-2 inhibitors for the treatment of arthritis. Clin Ther 221:1131–1157CrossRefGoogle Scholar
  14. Gaertner M, Muller L, Roos JF, Cani G, Santos ARS, Niero R, Calixto JB, Yunes RA, Delle Manache F, Cechinel-Filho V (1999) Analgesic triterpenes from Sebastiania schottiana roots. Phytomedicine 6:41–44PubMedCrossRefGoogle Scholar
  15. Garcia MD, Fernandez MA, Alvarez A, Saenz MT (2004) Antinociceptive and anti-inflammatory effect of the aqueous extract from leaves of Pimento racemosa var. ozua (Mimosaceae). J Ethnopharmacol 91:69–73PubMedCrossRefGoogle Scholar
  16. Geetha T, Varalakshmi P (2001) Anti-inflammatory activity of lupeol and linoleate in rats. J Ethnopharmacol 76:77–80PubMedCrossRefGoogle Scholar
  17. Ghosh MN, Singh H (1974) Inhibitory effect of a pyrrolizine alkaloid, crotalaburnine, on rat paw oedema and cotton pellet granuloma. Br J Pharmacol 51:503–508PubMedCrossRefGoogle Scholar
  18. Insel PA (1996) Analgesic, antipyretic and ant-inflammatory agents and drugs employed in the treatment of gout. In: Hardman JG, Limbord LE (eds) Mcgraw-Hill, New york. pp 617–657Google Scholar
  19. Jain NK, Kulkami SK, Singh A (2001) Role of cysteinyl leukotrienes in nociceptive and inflammatory conditions in experimental animals. Eur J Pharmacol 415:85–94CrossRefGoogle Scholar
  20. Knoll J (1967) Screening and grouping of psychopharmacological agents. In: Siegler PE, Mover HJ (eds) Animal and clinical pharmacologic techniques in drug evaluation. Yearbook Med. Publishers. Inc, Chicago, pp 305–321Google Scholar
  21. Koster R, Anderson M, De Beer J (1959) Acetic acid for analgesic screening. Fed Proceed 18:412–417Google Scholar
  22. Lanhers MC, Fleurentin J, Dorfman P et al (1991) Analgesic, antipyretic and anti-inflammatory properties of Euphorbia hirta. Planta Med 57:225–231PubMedCrossRefGoogle Scholar
  23. Murray CW, Porreca F, Cowan A (1988) Methodological refinement in the mouse paw formalin test: an animal model of tonic pain. J Ethnopharmacol Methods 20:175–186CrossRefGoogle Scholar
  24. Nguemfo EA, Dimo T, Azebaze AGB et al (2007) Anti-inflammatory and antinociceptive activities of the stem bark extracts from Allanblackia monticola STANER L.C. (Guttiferae). J Ethnopharmacol 114:417–424PubMedCrossRefGoogle Scholar
  25. Parma NS, Ghosh MN (1978) Anti-inflammatory activity of gossypin a bioflavanoid isolated from Hibiscus vitifolius Linn. Ind J Pharmacol 10:277–293Google Scholar
  26. Periaayagam JB, Sharma SA, Pillai KK (2006) Anti-inflammatory activity of Trichodesma indicun root extract in experimental animal. J Ethnopharmacol 104:410–414CrossRefGoogle Scholar
  27. Randall LO, Selitto JJ (1957) A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn 61:409–419Google Scholar
  28. Sayyah M, Hadidi N, Kamalinejad M (2004) Analgesic and anti-inflammatory activity of Lactuca sativa seed extract in rats. J Ethnopharmacol 92:325–329PubMedCrossRefGoogle Scholar
  29. Schowb M, Dubost MC (1984) Entendre la douleur. Pharmapost, RC Montargis, p 99Google Scholar
  30. Shalheen HM, Badreldin HA, Alquarawi AA et al (2000) Effect of Psidium guajava leaves on some aspects of the central nervous system in mice. Phytother Res 14:107–111CrossRefGoogle Scholar
  31. Singh G, Ramey DR, Shi H et al (1996) Gastrointestinal tract complications of non-steroidal anti-inflammatory drug treatment in rheumatoid arthritis. Arch Intern Med 156:1530–1537PubMedCrossRefGoogle Scholar
  32. Spereni E, Cervellati R, Innocenti G et al (2005) Anti-inflammatory, anti-nociceptive and antioxidant activities of Halanites aegyptica (L) Delile. J Ethnopharmacol 98:117–125CrossRefGoogle Scholar
  33. Stai HY, Chen YF, Wu TS (1995) Anti-inflammatory and analgesic activities of extract from roots of Angelica pubescens. Planta Med 61:1–8CrossRefGoogle Scholar
  34. Tjolsen A, Berge DG, Hunskaar S et al (1992) Popular medicine of the central plateau of Haiti-2. Ethnopharmacological inventory. J Ethnopharmacol 17:13–30Google Scholar
  35. Winter CA, Risley EA, Nuss GW (1962) Carrageenan-induced oedema in hind paw of rat: an assay for anti-inflammatory drugs. Proc Soc Exp Biol Med 111:544–547Google Scholar
  36. Zhang J, Cuzzucrea S (2000) GP16150, a poly adp-ribose polymerase inhibitor, exhibits an anti-inflammatory effect in at models of inflammatory. Auton Neurosci Basic Clin 85:141–147CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Edwige V. Ymele
    • 1
  • A. Bertrand Dongmo
    • 2
  • Théophile Dimo
    • 1
  1. 1.Department of Animal Biology, Laboratory of Animal physiology, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon
  2. 2.Department of Animal Biology and Physiology, Laboratory of Animal Physiology, Faculty of ScienceUniversity of DoualaDoualaCameroon

Personalised recommendations