, Volume 17, Issue 3, pp 181–190 | Cite as

Evaluation of protective efficacy of Spirulina platensis against collagen-induced arthritis in rats

  • Narendra Kumar
  • Surendra Singh
  • Nisha Patro
  • Ishan PatroEmail author
Research Article



To assess the protective efficacy of Spirulina platensis against collagen-induced arthritis (CIA) in female Wistar rats based on the changes in paws thickness, serum albumin, cholesterol, lipid peroxidation, alkaline phosphatase and acid phosphatase activities and histology of paw joints.


Arthritis was induced by intradermal injection of Collagen and Freund’s adjuvant incomplete suspension at several sites on the back with a dose of 2 mg kg−1 of body weight and boosted with 0.1 ml intradermally at the base of the tail. CIA rats were orally treated with 200 and 400 mg kg−1 per oral of S. platensis from 0 to 45th day.


S. platensis at 400 mg kg−1 per oral significantly elevates serum albumin and decreases the serum cholesterol, alkaline phosphatase and acid phosphatase activities, lipid peroxidation, paw thickness as well as normalize the joint histopathology of CIA rats.


S. platensis (400 mg kg−1) significantly normalizes changes observed in arthritic rats to near normal conditions, indicates that S. platensis has promising protective efficacy against CIA rats.


Spirulina platensis Collagen Alkaline phosphatase Lipid peroxidation Pannus 



Financial assistance provided by Ministry of Environment and Forest, New Delhi, India for Narendra Kumar is highly acknowledged. We acknowledge use of equipment facilities developed through the DBT-HRD and Bioinformatics Infrastructure grant to the School of Studies in Neuroscience.


  1. Agha AM, Gad MZ. Lipid peroxidation and lysosomal integrity inflammatory models in rats: the effects of indomethacin and naftazone. Pharmacol Res. 1995;32:279–84.PubMedCrossRefGoogle Scholar
  2. Alamanos Y, Voulgari PV, Drosos AA. Incidence and prevalence of rheumatoid arthritis, based on the 1987 American College of Rheumatology criteria: a systematic review. Semin Arthritis Rheum. 2006;36:182–8.PubMedCrossRefGoogle Scholar
  3. Belay A, Otta Y, Miyakawa K, Shimamatsu H. The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management. J Am Nutr Assoc. 2002;5:27–48.Google Scholar
  4. Chamorro G, Salazar M, Gómez de Lima Araujo K, et al. Actualizacion en la farmacologia de Spirulina (Arthrospira), un alimento no convencional. Arch Latinoam Nutr. 2002;52:232–9.PubMedGoogle Scholar
  5. Dillon JC, Phuc AP, Dubacq JP. Nutritional value of the alga Spirulina. World Rev Nutr Diet. 1995;77:32–46.PubMedGoogle Scholar
  6. Doumas BT, Watson W, Biggs HG. Albumin standards and the measurement of serum albumin with bromocresol green. Clin Chim Acta. 1971;31:87–96.PubMedCrossRefGoogle Scholar
  7. Ganesan K, Selvam R, Abhirami R, et al. Gender differences and protective effects of testosterone in collagen induced arthritis. Rheumatol Int. 2008;28:345–53.PubMedCrossRefGoogle Scholar
  8. Geetha T, Varalakshmi P, Latha RM. Effect of triterpenes from Crataeva nurvala stem bark on lipid peroxidation in adjuvant induced arthritis in rat. Pharmaco Res. 1998;37:191–5.CrossRefGoogle Scholar
  9. Gutman AB. The plasma proteins in disease: rheumatoid arthritis. Adv Protein Chem. 1948;4:218.Google Scholar
  10. Heliovaara M, Aho K, Knekt P, et al. Serum cholesterol and risk of rheumatoid arthritis in a cohort of 52800 men and women. Br J Rheumatol. 1996;35:255–7.PubMedCrossRefGoogle Scholar
  11. Hernandez AR, Castillo JLB, Oropeza MAJ, Zagoya JCD. Spirulina maxima prevents fatty liver formation in CD-1 male and female mice with experimental diabetes. Life Sci. 2001;69:1029–37.CrossRefGoogle Scholar
  12. Hernández-Corona A, Meckes M, Chamorro G, Barron ML. Antiviral activity of Spirulina maxima against herpes simplex virus type 2. Antivir Res. 2002;56:279–85.PubMedCrossRefGoogle Scholar
  13. Holmdahl R. Female preponderance for development of arthritis in rats is influenced by both sex chromosomes and sex steroids. Scand J Immunol. 1995;42:104–9.PubMedCrossRefGoogle Scholar
  14. Holmdahl R, Vingsbo C, Malmström V, et al. Chronicity of arthritis induced with homologous type II collagen (CII) in rats is dependent on anti- CII B-cell activation. J Autoimmun. 1994;7:739–52.PubMedCrossRefGoogle Scholar
  15. Hsiao G, Chou PH, Shen MY, et al. C-Phycocyanin, a very potent and novel platelet aggregation inhibitor from Spirulina platensis. J Agric Food Chem. 2005;53:4770–7734.Google Scholar
  16. Humason GL. Animal tissue technique. San Francisco: W.H. Freeman and Company; 1972.Google Scholar
  17. Khan M, Shobha JC, Mohan IK, et al. Effect of Spirulina against doxorubic in reduced cardiotoxicity. Phytother Res. 2005;19:1030–7.PubMedCrossRefGoogle Scholar
  18. Khan M, Shobha JC, Mohan IK, et al. Spirulina attenuates cyclosporine-induced nephrotoxicity in rats. J Appl Toxicol. 2006;26:444–51.PubMedCrossRefGoogle Scholar
  19. Kim H, Lee E, Cho H, Moon Y. Inhibitory effect of mast cell mediated immediate-type allergic reactions in rats by Spirulina. Biochem Phamacol. 1998;55:1071–6.CrossRefGoogle Scholar
  20. Kind PRN, King EJ. Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine. J Clin Pathol. 1954;7:322–6.PubMedCrossRefGoogle Scholar
  21. King EJ, Jegatheesan KA. A method for the determination of tartrate-labile, prostatic acid phosphatase in serum. J Clin Pathol. 1959;12:85–9.PubMedCrossRefGoogle Scholar
  22. Kobelt G, Jonsson L, Lindgren P, et al. Modeling the progression of rheumatoid arthritis: a two country model to estimate costs and consequences of rheumatoid arthritis. Arthritis Rheum. 2002;46:2310–9.PubMedCrossRefGoogle Scholar
  23. Kumar M, Sharma MK, Kumar A. Spirulina fusiformis: a food supplement against mercury induced hepatic toxicity. J Health Sci. 2005;51:424–30.CrossRefGoogle Scholar
  24. Lee DM, Weinblatt ME. Rheumatoid arthritis. Lancet. 2001;358:903–11.PubMedCrossRefGoogle Scholar
  25. Lu HK, Hsieh C, Hsu JJ, et al. Preventive effects of Spirulina platensis on skeletal muscle damage under exercise-induced oxidative stress. Eur J Appl Physiol. 2006;98:220–6.PubMedCrossRefGoogle Scholar
  26. Majithia V, Geraci SA. Rheumatoid arthritis: diagnosis and management. Am J Med. 2007;120:936–9.PubMedCrossRefGoogle Scholar
  27. Malaviya AN, Kapoor SK, Singh RR, et al. Prevalence of rheumatoid arthritis in the adult Indian Population. Rheumatol Int. 1993;13:131–4.PubMedCrossRefGoogle Scholar
  28. Mao, K., Van de, W.J., Gershwin, M.E. (2005). Effects of Spirulina-based dietary supplement on cytokine production from allergic rhinitis patients. J Med Food. 8, 27–30.Google Scholar
  29. Mendes RL, Nobre BP, Cardoso MT, et al. Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorganica Chim Acta. 2003;356:328–34.CrossRefGoogle Scholar
  30. Mishra KK, Pandey HP, Singh RH. A clinical study on cortisol and certain metabolites in some chronic psychosomatic disorders. Ind J Clin Biochem. 2007;22:41–3.CrossRefGoogle Scholar
  31. Mohan IK, Khan M, Shobha JC, et al. Protection against cisplatin induced nephrotoxicity by Spirulina in rats. Cancer Chemother Pharmacol. 2006;58:802–8.PubMedCrossRefGoogle Scholar
  32. Nagaoka S, Shimizu K, Kaneko H, et al. A novel protein C-phycocyanin plays crucial role in the hypocholesterolemic action of Spirulina platensis concentrate in rats. J Nutr. 2005;135:2425–30.PubMedGoogle Scholar
  33. Nanke Y, Kotake S, Akama H, Kamatani N. Alkaline phosphatase in rheumatoid arthritis patients: possible contribution of bone-type ALP to the raised activities of ALP in rheumatoid arthritis patients. Clin Rheumatol. 2002;21:198–202.PubMedCrossRefGoogle Scholar
  34. Okhawa H, Ohishi N, Yagi K. Assay for lipid peroxidation in animal tissue by thiobarbituric acid reaction. Ann Biochem. 1979;95:351–8.CrossRefGoogle Scholar
  35. Rasool M, Sabina EP, Lavanya B. Anti-inflammatory effect of Spirulina fusiformis on adjuvant-induced arthritis in mice. Biol Pharm Bull. 2006;29:2483–7.PubMedCrossRefGoogle Scholar
  36. Rathore NK, Singh S, Singh V. Spirulina as immuno-enhancer and biomodulator. J. Immunol. Immunopathol. 2004;6:1–10.Google Scholar
  37. Remirez D, Gonzalez A, Merino N, et al. Effect of phycocyanin in zymosan induced arthritis in mice. Drug Dev Res. 1999;48:70–5.CrossRefGoogle Scholar
  38. Remirez D, Gonzalez R, Merino N, et al. Inhibitory effects of Spirulina in zymosan-induced arthritis in mice. Mediators Inflamm. 2002;11:75–9.PubMedCrossRefGoogle Scholar
  39. Remmers EF, Joe B, Griffiths MM, et al. Modulation of multiple experimental arthritis models by collagen-induced arthritis quantitative trait loci isolated in congenic rat lines. Arthritis Rheum. 2002;46:2225–34.PubMedCrossRefGoogle Scholar
  40. Riss J, Decorde K, Sutra T, et al. Phycobiliprotein C-phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. J Agri Food Chem. 2007;55:7962–7.CrossRefGoogle Scholar
  41. Rogatto GP, de Oliveira CAM, dos Santos JW, et al. Influence of Spirulina intake on metabolism of exercised rats. Rev Bras Med Esporte. 2004;10:264–8.CrossRefGoogle Scholar
  42. Romay C, Armesto J, Remirez D, et al. Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflamm Res. 1998a;47:36–41.PubMedCrossRefGoogle Scholar
  43. Romay C, Ledón N, González R. Further studies on anti-inflammatory activity of phycocyanin in some animal models of inflammation. Inflamm Res. 1998b;47:334–8.PubMedCrossRefGoogle Scholar
  44. Romay C, Lendon N, Gonzalez R. Phycocyanin extract reduces leukotriene B4 levels in arachidonic acid induced mouse ear inflammation test. J Pharm Pharmacol. 1999;51:641–2.PubMedCrossRefGoogle Scholar
  45. Romay C, Lendon N, Gonzalez R. Effects of phycocyanin extract on prostaglandin E2 levels in mouse ear inflammation test. Arz Forsch Drug Res. 2000;50:1106–9.Google Scholar
  46. Stidworthy G, Payne RW, Shetlar CL, Shetlar MR. Objective evaluation of patients with rheumatic diseases. II. Paper electrophoretic studies of serum glycoprotein and protein from patients with rheumatoid arthritis. J Clin Invest. 1957;36:309–13.PubMedCrossRefGoogle Scholar
  47. Taysi S, Polat F, Gul M, et al. Lipid peroxidation, some extracellular antioxidants and antioxidants enzymes in serum of patients with rheumatoid arthritis. Rheumatol Int. 2002;21:200–4.PubMedCrossRefGoogle Scholar
  48. Thaakur SR, Jyothi B. Effect of Spirulina maxima on the haloperidol induced tardive dyskinesia and oxidative stress in rats. J Neur Transmis. 2007;114:1217–25.CrossRefGoogle Scholar
  49. Van den Berg WB. Animal models of arthritis. In: Isenberg DA, Maddision PJ, Davidglass PW, Breedveld FC, editors. Oxford text book of rheumatology. UK: Oxford University Press; 2004. p. 433–41.Google Scholar
  50. Walwadkar SD, Suryakar AN, Katkam RV, et al. Oxidative stress and calcium-phosphorus levels in rheumatoid arthritis. Ind J Clin Biochem. 2006;21:134–7.CrossRefGoogle Scholar
  51. Zarrouk C. Contribution a l’etude d; une cyanophycee. Influene de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch. et Gardner) Geitler. Ph.D.thesis. France: University of Paris; 1966.Google Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Narendra Kumar
    • 1
  • Surendra Singh
    • 2
  • Nisha Patro
    • 3
  • Ishan Patro
    • 3
    Email author
  1. 1.School of Studies in MicrobiologyJiwaji UniversityGwaliorIndia
  2. 2.Department of BotanyBanaras Hindu UniversityVaranasiIndia
  3. 3.School of Studies in NeuroscienceJiwaji UniversityGwaliorIndia

Personalised recommendations