Instruments and Experimental Techniques

, Volume 48, Issue 4, pp 491–497

A Setup for Investigating Induced Refractive Index Change in Optical Fibers at High Temperatures

  • A. S. Bozhkov
  • S. A. Vasil’ev
  • O. I. Medvedkov
  • M. V. Grekov
  • I. G. Korolev
General Experimental Techniques

Abstract

An automated experimental setup for investigating the mechanisms of refractive index change in optical fibers at high temperatures is described. A resistive furnace that allows a section of an optical fiber to be heated from room temperature to 1200°C at a given rate was developed. The results from experiments on annealing gratings formed in a germanosilicate fiber with 14 mol % GeO2 in the fiber core are presented. The temperature stability of photoinduced fiber refractive index gratings at different demarcation energies was calculated on the basis of the data obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Kashyap, R., Fiber Bragg Gratings, San Diego: Academic, 1999.Google Scholar
  2. 2.
    Othonos, A. and Kalli, K., Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, London: Artech House, 1999.Google Scholar
  3. 3.
    Atkins, R.M. and Mizrahi, V., Electron. Lett., 1992, vol. 28, p. 1743.Google Scholar
  4. 4.
    Baker, S.R., Rourke, H.N., Baker, V., and Goodchild, D., J. Lightwave Technol., 1997, vol. 15, no.8, p. 1470.CrossRefGoogle Scholar
  5. 5.
    Patrick, H., Gilbert, S.L., Lidgard, A., and Gallagher, M.D., J. Appl. Phys., 1995, vol. 78, no.5, p. 2940.CrossRefGoogle Scholar
  6. 6.
    Dong, L. and Liu, W.F., Appl. Opt., 1997, vol. 36, no.31, p. 8222.Google Scholar
  7. 7.
    Archambault, J.-L., Reekie, L., and Russel, P.St.J., Electron. Lett., 1993, vol. 29, no.5, p. 453.Google Scholar
  8. 8.
    Vasiliev, S.A., Medvedkov, O.I., Bozhkov, A.S., and Dianov, E.M., Abstracts of Papers, BGPP’2003, Monterey, California, 2003, Tech. Dig. Ser.-Opt. Soc. Am., Paper MD31, p. 145.Google Scholar
  9. 9.
    Fokine, M., Opt. Lett., 2002, vol. 27, no.12, p. 1016.Google Scholar
  10. 10.
    Fokine, M., J. Opt. Soc. Am. B: Opt. Phys., 2002, vol. 19, no.8, p. 1759.Google Scholar
  11. 11.
    Erdogan, T., Mizrahi, V., Lemaire, P.J., and Monroe, D., J. Appl. Phys., 1994, vol. 76, no.1, p. 73.CrossRefGoogle Scholar
  12. 12.
    Razafimahatratra, D., Niay, P., Douay, M., et al., Appl. Opt., 2000, vol. 39, no.12, p. 1924.Google Scholar
  13. 13.
    Rathje, J., Kristensen, M., and Pedersen, J.E., J. Appl. Phys., 2000, vol. 88, p. 1050.CrossRefGoogle Scholar
  14. 14.
    Medvedkov, O.I., Korolev, I.G., and Vasil’ev, S.A, Preprint of Fiber Opt. Sci. Center, General Phys. Inst., Russ. Acad. of Sci., Moscow, 2004, no. 6.Google Scholar
  15. 15.
    Korolev, I.G., Cand. Sci. (Phys.-Math.) Dissertation, Moscow: Fiber Opt. Sci. Center, General Phys. Inst., Russ. Acad. of Sci., 2004.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • A. S. Bozhkov
    • 1
  • S. A. Vasil’ev
    • 1
  • O. I. Medvedkov
    • 1
  • M. V. Grekov
    • 1
  • I. G. Korolev
    • 1
  1. 1.Fiber Optics Research Center, Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations