Instruments and Experimental Techniques

, Volume 48, Issue 3, pp 349–354 | Cite as

A Nanographite Film-Based Fast Response Detector for Intense Laser Radiation

  • G. M. Mikheev
  • R. G. Zonov
  • A. N. Obraztsov
  • Yu. P. Svirko
  • A. P. Volkov
General Experimental Techniques

Abstract

A simple high-speed photodetector of high-power laser radiation, based on the optical rectification effect, is described. It operates without an external power source. A nanographite film deposited onto a silicon substrate using the plasmochemical deposition technique and having two conducting surface electrodes is used as the photodetector’s photosensitive element. The performance of this device was demonstrated by detecting pulsed laser radiation in a spectral range of 0.266–1.9 µm using the second, third, and fourth harmonics of radiation from an YAG : Nd3+ laser with passive Q-switching and radiation from light oscillators based on stimulated Raman scattering in compressed hydrogen. It was shown that the photodetector sensitivity is proportional to the optical radiation frequency and its response time is shorter than 0.5 ns.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Izmerenie energeticheskikh parametrov i kharakteristik lazernogo izlucheniya (Measurements of Energy Parameters and Characteristics of Laser Radiation), Kotyuk, A.F., Ed., Moscow: Radio i Svyaz’, 1981.Google Scholar
  2. 2.
    Gavanin, V.A., Naumov, A.V., and Bugrov, P.V., Mashinostroenie, 1978, no. 5, p. 183.Google Scholar
  3. 3.
    Ishanin, G.G., Priemniki izlucheniya opticheskikh i optiko-elektronnykh priborov (Detectors of Optical and Optical-Electronic Devices) Leningrad: Mashinostroenie, 1986.Google Scholar
  4. 4.
    Ward, J.F., Phys. Rev., 1966, vol. 143, p. 569.CrossRefGoogle Scholar
  5. 5.
    Morozov, B.N. and Aivazyan, Yu.M., Kvantovaya Elektron., 1980, vol. 7, no.1, p. 5 [Sov. J. Quantum Electron. (Engl. Transl.), 1980, vol. 10, p. 1].Google Scholar
  6. 6.
    Mikheev, G.M., Zonov, R.G., Obraztsov, A.N., and Svirko, Yu.P., Appl. Phys. Lett., 2004, vol. 84, p. 4854.CrossRefGoogle Scholar
  7. 7.
    Mikheev, G.M., Zonov, R.G., Obraztsov, A.N., and Svirko, Yu.P., Pis’ma Zh. Tekh. Fiz., 2004, vol. 30, no.17, p. 88 [Tech. Phys. Lett. (Engl. Transl.), 2004, vol.30, no. 9, p. 750].Google Scholar
  8. 8.
    Pavlovskii, I.Yu. and Obraztsov, A.N., Prib. Tekh. Eksp., 1998, no. 1, p. 152 [Instrum. Exp. Tech. (Engl. Transl.), 1998, no. 1, p. 136].Google Scholar
  9. 9.
    Obraztsov, A.N., Volkov, A.P., Boronin, A.I., et al., Zh. Eksp. Teor. Fiz., 2001, vol. 120, p. 970 [J. Exp. Theor. Phys. (Engl. Transl.), 2001, vol. 93, p. 846].Google Scholar
  10. 10.
    Obraztsov, A.N., Zolotukhin, A.A., Ustinov, A.O., et al., Carbon, 2003, vol. 41, p. 836.CrossRefGoogle Scholar
  11. 11.
    Mikheev, G.M., Maleev, D.I., and Mogileva, T.N., Kvantovaya Elektron. (Moscow), 1992, vol. 19, no.1, p. 45 [Sov. J. Quantum Electron. (Engl. Transl.), 1992, vol. 22, p. 37].Google Scholar
  12. 12.
    Venkin, G.V. and Mikheev, G.M., Kvantovaya Elektron. (Moscow), 1985, vol. 12, no.2, p. 394.Google Scholar
  13. 13.
    Mikheev, G.M., Kvant. Elektron. (Moscow), 1991, vol. 18, no.3, p. 337 [Sov. J. Quantum Electron. (Engl. Transl.), 1991, vol. 21, p. 304].Google Scholar
  14. 14.
    Ishchenko, A.A., Stroenie i spektral’no-lyuminestsentnye svoistva polimetinovykh krasitelei (Structure and Spectral-Luminescent Properties of Polymetine Dyes), Kiev: Nauk. Dumka, 1991.Google Scholar
  15. 15.
    Maleev, D.I., Mikheev, G.M., and Mogileva, T.N., Prib. Tekh. Eksp., 1990, no. 5, p. 198.Google Scholar
  16. 16.
    Maier, M., Kaiser, W., and Giordmaine, J.A., Phys. Rev., 1969, vol. 177, p. 580.CrossRefGoogle Scholar
  17. 17.
    Jacobs, R.R., Goldhar, J., Eimerl, D., et al., Appl. Phys. Lett., 1980, vol. 37, p. 264.CrossRefGoogle Scholar
  18. 18.
    Venkin, G., Esikov, D.A., Maleev, D.I., and Mikheev, G.M., Kvantovaya Elektron. (Moscow), 1986, vol. 13, p. 379 [Sov. J. Quantum Electron. (Engl. Transl.), 1986, vol. 16].Google Scholar
  19. 19.
    Anisimova, I.D., Vikulin, I.M., Zaitov, F.A., and Kurmashev, Sh.D., Poluprovodnikovye fotopriemniki: Ul’trafioletovyi, vidimyi i blizhnii infrakrasnyi diapazony spektra (Semiconductor Photodetectors: Ultraviolet, Visual, and Near-Infrared Spectral Regions), Moscow: Radio i Svyaz’, 1984.Google Scholar
  20. 20.
    Mikheev, G.M., Zonov, R.G., Obraztsov, A.N., and Svirko, Yu.P., Zh. Eksp. Teor. Fiz., 2004, vol. 126, no.5, p. 1083 [J. Exp. Theor. Phys. (Engl. Transl.), 2004, vol. 99, no. 5, p. 942].Google Scholar
  21. 21.
    Mikheev, G.M., Zonov, R.G., Obraztsov, A.N., and Volkov, A.P., Zh. Eksp. Teor. Fiz., 2004, vol. 125, no.3, p. 548 [J. Exp. Theor. Phys. (Engl. Transl.), 2004, vol.98, no. 3, p. 483].Google Scholar
  22. 22.
    Mikheev, G.M., Zonov, R.G., Obraztsov, A.N., and Volkov, A.P., Proc. SPIE, 2004, vol. 5399, p. 184.CrossRefGoogle Scholar
  23. 23.
    Mikheev, G.M., Zonov, R.G., Obraztsov, A.N., and Volkov, A.P., Izv. Vyssh. Uchebn. Zaved., Priborostroenie, 2004, vol. 47, no.11, p. 59.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • G. M. Mikheev
    • 1
  • R. G. Zonov
    • 1
  • A. N. Obraztsov
    • 2
  • Yu. P. Svirko
    • 3
  • A. P. Volkov
    • 2
  1. 1.Institute of Applied Mechanics, Urals DivisionRussian Academy of SciencesIzhevskRussia
  2. 2.Physics DepartmentMoscow State UniversityMoscowRussia
  3. 3.Physics DepartmentUniversity of JoensuuJoensuuFinland

Personalised recommendations