Advertisement

Instruments and Experimental Techniques

, Volume 48, Issue 1, pp 32–36 | Cite as

A new method for determining particle energy in the range 1011−1015 eV and results from a beam test at 180 GeV/c

  • G. L. Bashindzhagyan
  • A. G. Voronin
  • S. A. Golubkov
  • V. M. Grebenyuk
  • N. N. Egorov
  • A. M. Kalinin
  • D. E. Karmanov
  • K. A. Kon’kov
  • N. A. Korotkova
  • Yu. F. Kozlov
  • Z. V. Krumshtein
  • M. M. Merkin
  • M. I. Panasyuk
  • A. Yu. Pakhomov
  • D. M. Podorozhnyi
  • E. B. Postnikov
  • T. M. Roganova
  • A. B. Sadovskii
  • L. G. Sveshnikova
  • A. I. Sidorov
  • L. G. Tkachev
  • A. N. Turundaevskii
Nuclear Experimental Technique

Abstract

A method for measuring the energy of the nuclear component of cosmic rays is described. The principle of the method consists in determining the energy of a primary nucleus from the space density of secondary particles produced in a thin target in the initial event of inelastic interaction. The results from testing the method on an ejected 180-GeV pion beam are presented. Analysis of the experimental data and simulation show that, using this method, it is possible to measure the particle energy with a relative error of ∼67%. The method is being developed for the direct detection of cosmic rays over wide ranges of energy (1011−1015 eV/particle) and charge (Z = 1–30) during a cosmic experiment in near-Earth space.

Keywords

Experimental Data Physical Chemistry Relative Error Direct Detection Particle Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Grigorov, N.L., Murzin, V.S., and Rapoport, I.D., Zh. Eksp. Teor. Fiz., 1958, vol. 34, p. 506 [Sov. J. Exp. Theor. Phys., 1958, vol. 7, p. 348].Google Scholar
  2. 2.
    Korotkova, N.A., Podorozhnyi, D.M., Postnikov, E.B., et al., Yad. Fiz., 2002, vol. 65, no 5, p. 884 [Phys. At. Nucl., vol. 65, no. 5, p. 852].Google Scholar
  3. 3.
    Nishimura, J., Soryusi-ron Kenkyu, 1956, no. 12, p. 24.Google Scholar
  4. 4.
    Masciocchi, S., Nygard, E., Tocker, O., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 1994, vol. 340, p. 572.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • G. L. Bashindzhagyan
    • 1
  • A. G. Voronin
    • 1
  • S. A. Golubkov
    • 2
  • V. M. Grebenyuk
    • 3
  • N. N. Egorov
    • 2
  • A. M. Kalinin
    • 3
  • D. E. Karmanov
    • 1
  • K. A. Kon’kov
    • 2
  • N. A. Korotkova
    • 1
  • Yu. F. Kozlov
    • 2
  • Z. V. Krumshtein
    • 3
  • M. M. Merkin
    • 1
  • M. I. Panasyuk
    • 1
  • A. Yu. Pakhomov
    • 1
  • D. M. Podorozhnyi
    • 1
  • E. B. Postnikov
    • 1
  • T. M. Roganova
    • 1
  • A. B. Sadovskii
    • 2
  • L. G. Sveshnikova
    • 1
  • A. I. Sidorov
    • 2
  • L. G. Tkachev
    • 3
  • A. N. Turundaevskii
    • 1
  1. 1.Skobel’tsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  2. 2.Research Institute of Materials ScienceZelenograd, Moscow oblastRussia
  3. 3.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia

Personalised recommendations