The EU 40 % greenhouse gas emission reduction target by 2030 in perspective

  • A. F. HofEmail author
  • M. G. J. den Elzen
  • A. Mendoza Beltran
Original Paper


We assess the fairness and ambition level of the EU’s Intended Nationally Determined Contribution (INDC) of reducing domestic greenhouse gas emissions by at least 40 % relative to 1990. For this, we calculate which reduction targets for other major emitting economies are comparable to the EU target, given widely diverging effort-sharing approaches. We introduce a novel approach in which the EU target is taken as starting point for allocating emission reductions to other regions. Under this approach, the global emission level is an outcome of the analysis, contrary to standard effort-sharing approaches in which the global climate goal is specified. We find that the INDC of the EU, if other regions take on comparable targets based on a differentiated convergence per-capita approach, could be sufficient for a global 2 °C pathway. However, if emissions are allocated according to a historical responsibility approach, the global emission level in 2030 is much higher than the level of 2 °C pathways. Furthermore, we conclude that India, Mexico, and Brazil have more ambitious INDCs than the EU according to both a differentiated convergence per-capita approach and a historical responsibility approach.


Climate change INDCs Burden sharing Effort sharing Mitigation 



The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. 603942 (PATHWAYS).

Supplementary material

10784_2016_9317_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 26 kb)


  1. Admiraal, A., den Elzen, M., Forsell, N., Turkovska, O., Roelfsema, M., & van Soest, H. (2015). Assessing Intended Nationally Determined Contributions to the Paris climate agreement—What are the projected global and national emission levels for 2025–2030?. The Hague: PBL Netherlands Environmental Assessment Agency.Google Scholar
  2. Amann, M., Rafaj, P., & Höhne, N. (2009). GHG mitigation potentials in Annex I countries. Comparison of Model Estimates for 2020. Laxenburg, Austria. IR-09-034, IIASA.Google Scholar
  3. Angelsen, A., Gierløff, C. W., Beltrán, A. M., & den Elzen, M. (2014). REDD credits in a global carbon market: Options and impacts. Nordic Council of Ministers.Google Scholar
  4. Baer, P., Athanasiou, T., Kartha, S., & Kemp-Benedict, E. (2009). Greenhouse development rights: A proposal for a fair global climate treaty. Ethics, Place and Environment, 12(3), 267–281.CrossRefGoogle Scholar
  5. BASIC Experts. (2011). Equitable access to sustainable development: Contribution to the body of scientific knowledge. Beijing, Brasilia, Cape Town and Mumbai: BASIC Expert Group.Google Scholar
  6. Bode, S. (2004). Equal emissions per capita over time: A proposal to combine responsibility and equity of rights for post-2012 GHG emission entitlement allocation. European Environment, 14(5), 300–316.CrossRefGoogle Scholar
  7. Böttcher, H., Gusti, M., Mosnier, A., & Havlik, P. (2011). Global forestry emissions projections and abatement costs: IIASA, Laxenburg, Austria, final report submitted to The Secretary of State of Energy and Climate Change, London (August 2011).
  8. Chakravarty, S., Chikkatur, A., de Coninck, H., Pacala, S., Socolow, R., & Tavoni, M. (2009). Sharing global CO2 emission reductions among one billion high emitters. Proceedings of the National Academy of Sciences, 106(29), 11884–11888.CrossRefGoogle Scholar
  9. Clarke, L., Jiang, K., Akimoto, K., Babiker, M., Blanford, G., Fisher-Vanden, K., et al. (2014). Assessing transformation pathways. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, et al. (Eds.), Climate Change 2014: Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.Google Scholar
  10. Dellink, R., Briner, G., & Clapp, C. (2011). The Copenhagen Accord/Cancun Agreements emissions pledges for 2020: Exploring economic and environmental impacts. Climate Change Economics, 2(1), 53–78.CrossRefGoogle Scholar
  11. den Elzen, M. G. J., Hof, A. F., Beltran, A. M., Grassi, G., Roelfsema, M., van Ruijven, B., et al. (2011). The Copenhagen accord: Abatement costs and carbon prices resulting from the submissions. Environmental Science & Policy, 14(1), 28–39.CrossRefGoogle Scholar
  12. den Elzen, M. G. J., Hof, A. F., & Roelfsema, M. (2013a). Analysing the greenhouse gas emission reductions of the mitigation action plans by non-Annex I countries by 2020. Energy Policy, 56, 633–643.CrossRefGoogle Scholar
  13. den Elzen, M., Hof, A., van den Berg, M., & Roelfsema, M. (2014). Climate policy. In E. Stehfest, D. van Vuuren, T. Kram, & L. Bouwman (Eds.), Integrated assessment of global environmental change with IMAGE 3.0. Model description and policy applications (pp. 303–311). The Hague: PBL Netherlands Environmental Assessment Agency.Google Scholar
  14. den Elzen, M. G. J., Höhne, N., Brouns, B., Winkler, H., & Ott, H. E. (2007). Differentiation of countries’ future commitments in a post-2012 climate regime. An assessment of the “South-North Dialogue” proposal. Environmental Science & Policy, 10(3), 185–203.CrossRefGoogle Scholar
  15. den Elzen, M. G. J., & Lucas, P. L. (2005). The FAIR model: A tool to analyse environmental and costs implications of regimes of future commitments. Environmental Modeling and Assessment, 10(2), 115–134.CrossRefGoogle Scholar
  16. den Elzen, M. G. J., Olivier, J. G. J., Höhne, N., & Janssens-Maenhout, G. (2013b). Countries’ contributions to climate change: Effect of accounting for all greenhouse gases, recent trends, basic needs and technological progress. Climatic Change, 121(2), 397–412.CrossRefGoogle Scholar
  17. den Elzen, M. G. J., Schaeffer, M., & Lucas, P. (2005). Differentiating future commitments on the basis of countries’ relative historical responsibility for climate change: Uncertainties in the ‘Brazilian Proposal’ in the context of a policy implementation. Climatic Change, 71(3), 277–301.CrossRefGoogle Scholar
  18. Enerdata. (2010). POLES model marginal abatement cost curves (MACCs) based on the World Energy Outlook 2009.
  19. EPA. (2013). Global mitigation of non-CO 2 greenhouse gases: 20102030. EPA-430-R-13-011. United States Environmental Protection Agency.
  20. European Commission. (2014). Fact Sheet Climate Change 2014,
  21. Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., et al. (2007). Changes in atmospheric constituents and in radiative forcing. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, et al. (Eds.), Climate Change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, New York, NY: Cambridge University Press.Google Scholar
  22. Friman, M., & Strandberg, G. (2014). Historical responsibility for climate change: Science and the science-policy interface. Wiley Interdisciplinary Reviews: Climate Change, 5(3), 297–316.Google Scholar
  23. Graus, W., Harmelink, M., & Hendriks, C. (2004). Marginal GHG-abatement curves for agriculture. Utrecht: Ecofys.Google Scholar
  24. Gupta, S., & Bhandari, M. (1999). An effective allocation criterion for CO2 emissions. Energy Policy, 27(12), 727–736.CrossRefGoogle Scholar
  25. Gupta, S., Tirpak, D. A., Burger, N., Gupta, J., Höhne, N., Boncheva, A. I., et al. (2007). Policies, instruments and co-operative arrangements. In B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, & L. A. Meyer (Eds.), Climate Change 2007: Mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  26. Hof, A. F., & den Elzen, M. G. J. (2010). The effect of different historical emissions datasets on emission targets of the sectoral mitigation approach Triptych. Climate Policy, 10(6), 684–704.CrossRefGoogle Scholar
  27. Hof, A. F., den Elzen, M. G. J., & Roelfsema, M. (2013). The effect of updated pledges and business-as-usual projections, and new agreed rules on expected global greenhouse gas emissions in 2020. Environmental Science & Policy, 33, 308–319.CrossRefGoogle Scholar
  28. Hof, A. F., den Elzen, M. G. J., & van Vuuren, D. P. (2009). Environmental effectiveness and economic consequences of fragmented vs. universal regimes: What can we learn from model studies? International Environmental Agreements: Politics, Law and Economics, 9(1), 39–62.CrossRefGoogle Scholar
  29. Höhne, N., Blum, H., Matthews, B., Fuglestvedt, J., Skeie, R. B., Kurosawa, A., et al. (2011). Contributions of individual countries’ emissions to climate change and their uncertainty. Climatic Change, 106(3), 359–391.CrossRefGoogle Scholar
  30. Höhne, N., den Elzen, M., & Escalante, D. (2014). Regional GHG reduction targets based on effort sharing: A comparison of studies. Climate Policy, 14(1), 122–147.CrossRefGoogle Scholar
  31. Höhne, N., den Elzen, M. G. J., & Weiss, M. (2006). Common but differentiated convergence (CDC): A new conceptual approach to long-term climate policy. Climate Policy, 6(2), 181–199.CrossRefGoogle Scholar
  32. IEA. (2009). World energy outlook 2009. Paris: International Energy Agency.Google Scholar
  33. IEA. (2012). Energy statistics and balances. Paris: International Energy Agency.Google Scholar
  34. JRC/PBL. (2012). EDGAR version 4.2 FT2010. Joint Research Centre of the European Commission/PBL Netherlands Environmental Assessment Agency.
  35. Kindermann, G., Obersteiner, M., Sohngen, B., Sathaye, J., Andrasko, K., Rametsteiner, E., et al. (2008). Global cost estimates of reducing carbon emissions through avoided deforestation. Proceedings of the National Academy of Sciences of the United States of America, 105(30), 10302–10307.CrossRefGoogle Scholar
  36. Kriegler, E., Tavoni, M., Aboumahboub, T., Luderer, G., Calvin, K., Maere, G. D., et al. (2013). What does the 2C target imply for a global climate agreement in 2020? The LIMITS study on Durban Platform scenarios. Climate Change Economics, 4(4), 1340008.CrossRefGoogle Scholar
  37. Lucas, P., van Vuuren, D. P., Olivier, J. A., & den Elzen, M. G. J. (2007). Long-term reduction potential of non-CO2 greenhouse gases. Environmental Science & Policy, 10(2), 85–103.CrossRefGoogle Scholar
  38. Meinshausen, M., Jeffery, L., Guetschow, J., Robiou du Pont, Y., Rogelj, J., Schaeffer, M., et al. (2015). National post-2020 greenhouse gas targets and diversity-aware leadership. Nature Climate Change, 5, 1098–1106.CrossRefGoogle Scholar
  39. Meyer, A. (2000). Contraction and convergence: The global solution to climate change (Vol. 5). Bristol: Schumacher Briefings, Green Books.Google Scholar
  40. O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., et al. (2014). A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Climatic Change, 122(3), 387–400.CrossRefGoogle Scholar
  41. Pan, J. (2005). Meeting human development goals with low emissions: An alternative to emissions caps for post-Kyoto from a developing country perspective. International Environmental Agreements: Politics, Law and Economics, 5, 89–104.CrossRefGoogle Scholar
  42. Pan, X., Teng, F., Ha, Y., & Wang, G. (2014a). Equitable access to sustainable development: Based on the comparative study of carbon emission rights allocation schemes. Applied Energy, 130, 632–640.CrossRefGoogle Scholar
  43. Pan, X., Teng, F., & Wang, G. (2014b). A comparison of carbon allocation schemes: On the equity-efficiency tradeoff. Energy, 74(C), 222–229.CrossRefGoogle Scholar
  44. Pan, X., Teng, F., & Wang, G. (2014c). Sharing emission space at an equitable basis: Allocation scheme based on the equal cumulative emission per capita principle. Applied Energy, 113, 1810–1818.CrossRefGoogle Scholar
  45. Peterson, E. B., Schleich, J., & Duscha, V. (2011). Environmental and economic effects of the Copenhagen pledges and more ambitious emission reduction targets. Energy Policy, 39(6), 3697–3708.CrossRefGoogle Scholar
  46. Raupach, M. R., Davis, S. J., Peters, G. P., Andrew, R. M., Canadell, J. G., Ciais, P., et al. (2014). Sharing a quota on cumulative carbon emissions. Nature Climate Change, 4(10), 873–879.CrossRefGoogle Scholar
  47. Riahi, K., Kriegler, E., Johnson, N., Bertram, C., den Elzen, M., Eom, J., et al. (2015). Locked into Copenhagen pledges—Implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technological Forecasting and Social Change, 90(PA), 8–23.CrossRefGoogle Scholar
  48. Ringius, L., Torvanger, A., & Holtsmark, B. (1998). Can multi-criteria rules fairly distribute climate burdens? OECD results from three burden sharing rules. Energy Policy, 26(10), 777–793.CrossRefGoogle Scholar
  49. Ringius, L., Torvanger, A., & Underdal, A. (2002). Burden sharing and fairness principles in international climate policy. International Environmental Agreements: Politics, Law and Economics, 2, 1–22.CrossRefGoogle Scholar
  50. Rive, N., Torvanger, A., & Fuglestvedt, J. S. (2006). Climate agreements based on responsibility for global warming: Periodic updating, policy choices, and regional costs. Global Environmental Change, 16(2), 182–194.CrossRefGoogle Scholar
  51. Rogelj, J., Nabel, J., Chen, C., Hare, W., Markmann, K., Meinshausen, M., et al. (2010). Copenhagen accord pledges are paltry. Nature, 464(7292), 1126–1128.CrossRefGoogle Scholar
  52. Rose, A., Stevens, B., Edmonds, J., & Wise, M. (1998). International equity and differentiation in global warming policy: An application to tradeable emission permits. Environmental & Resource Economics, 12(1), 25–51.CrossRefGoogle Scholar
  53. Russ, P., & Criqui, P. (2007). Post-Kyoto CO2 emission reduction: The soft landing scenario analysed with POLES and other world models. Energy Policy, 35, 786–796.CrossRefGoogle Scholar
  54. Russ, P., & van Ierland, T. (2009). Insights on different participation schemes to meet climate goals. Energy Economics, 31(Suppl. 2), S163–S173.CrossRefGoogle Scholar
  55. Schwarz, W., Gschrey, B., Leisewitz, A., Herold, A., & Gores, S. (2011). Preparatory study for a review of Regulation (EC) No 842/2006 on certain fluorinated greenhouse gases. Final report prepared for the European Commission in the context of service contract no 070307/2009/548866/SER/C4.
  56. Stehfest, E., van Vuuren, D., Kram, T., Bouwman, L., Alkemade, R., Bakkenes, M., et al. (2014). Integrated assessment of global environmental change with IMAGE 3.0. Model description and policy applications. The Hague: PBL Netherlands Environmental Assessment Agency.Google Scholar
  57. Tavoni, M., Kriegler, E., Riahi, K., van Vuuren, D. P., Aboumahboub, T., Bowen, A., et al. (2015). Post-2020 climate agreements in the major economies assessed in the light of global models. Nature Climate Change, 5(2), 119–126.CrossRefGoogle Scholar
  58. UNEP. (2014). The emissions gap report 2014. Nairobi: United Nations Environment Programme (UNEP).Google Scholar
  59. UNEP. (2015). The emissions gap report 2015. Nairobi: United Nations Environment Programme (UNEP).Google Scholar
  60. UNFCCC. (1995). Climate Change 1995, the science of Climate Change: Summary for policymakers and technical summary of the working group I report.Google Scholar
  61. UNFCCC. (1997). Paper no. 1: Brazil; proposed elements of a protocol to the united nations framework convention on climate change. UNFCCC/AGBM/1997/MISC.1/Add.3 GE.97. Bonn.Google Scholar
  62. UNFCCC. (2010). Report of the conference of the parties on its sixteenth session, held in Cancun from 29 November to 10 December 2010. Addendum. Part Two: Action taken by the Conference of the Parties at its sixteenth session. FCCC/CP/2010/7/Add.1.Google Scholar
  63. UNFCCC. (2012). Quantified economy-wide emission reduction targets by developed country Parties to the Convention: Assumptions, conditions, commonalities and differences in approaches and comparison of the level of emission reduction efforts. UNFCCC document FCCC/TP/2012/2. United Nations Framework Convention on Climate Change.Google Scholar
  64. UNFCCC. (2015). Adoption of the Paris agreement: Proposal by the president. FCCC/CP/2015/L.9/Rev.1.Google Scholar
  65. United Nations. (1992). United Nations Framework Convention on Climate Change. New York, NY.
  66. Van Ruijven, B. J., Van Vuuren, D. P., Van Vliet, J., Beltran, A. M., Deetman, S., & Den Elzen, M. G. J. (2012a). Implications of greenhouse gas emission mitigation scenarios for the main Asian regions. Energy Economics, 34(SUPPL. 3), S459–S469.CrossRefGoogle Scholar
  67. Van Ruijven, B. J., Weitzel, M., den Elzen, M. G. J., Hof, A. F., van Vuuren, D. P., Peterson, S., et al. (2012b). Emission allowances and mitigation costs of China and India resulting from different effort-sharing approaches. Energy Policy, 46, 116–134.CrossRefGoogle Scholar
  68. van Vliet, J., van den Berg, M., Schaeffer, M., van Vuuren, D. P., den Elzen, M., Hof, A. F., et al. (2012). Copenhagen accord pledges imply higher costs for staying below 2 °C warming. Climatic Change, 113(2), 551–561.CrossRefGoogle Scholar
  69. Wada, K., Sano, F., Akimoto, K., & Homma, T. (2012). Assessment of Copenhagen pledges with long-term implications. Energy Economics, 34(Suppl. 3), S481–S486.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • A. F. Hof
    • 1
    • 2
    Email author
  • M. G. J. den Elzen
    • 1
  • A. Mendoza Beltran
    • 3
  1. 1.PBL Netherlands Environmental Assessment AgencyBilthovenThe Netherlands
  2. 2.Copernicus Institute of Sustainable DevelopmentUtrecht UniversityUtrechtThe Netherlands
  3. 3.CML Industrial EcologyLeiden UniversityLeidenThe Netherlands

Personalised recommendations