Allocation and architecture in climate governance beyond Kyoto: lessons from interdisciplinary research on target setting

  • Norichika KanieEmail author
  • Hiromi Nishimoto
  • Yasuaki Hijioka
  • Yasuko Kameyama
Original Paper


The United Nations Framework Convention on Climate Change envisions that all countries will follow the principle of ‘common but differentiated responsibility’ in terms of their responsibility to protect the earth’s climate system. However, its concrete application has always been controversial. The Kyoto Protocol framed this allocation issue in terms of quantified emission reduction and limitation objectives (QERLOs) in its Annex B, but this also triggered the refusal of the United States to ratify the Protocol. This article identifies some of the problems associated with allocation, and its problems inter-linked with governance architecture, by examining the case of the allocation of reduction commitments for greenhouse gas emissions in the context of climate governance beyond 2012. Three broad criteria are used in the discussion, namely, responsibility, capability, and efficiency. Target numbers for individual countries differ with the criteria used, but they also differ even within the same criteria category, due to different ways these conceptual criteria are translated into quantitative calculation formulas. Sometimes this makes a large difference for individual targets. Our calculations using different criteria and formula to come up with medium-term targets for selected developed countries show that differences in results are caused by the choice of allocation principle, differences in allocation formula under a given allocation principle, and different calculation criteria used under a given allocation formula. Assumptions in modeling and the choice of data also affect results. Importantly, interests are often embedded explicitly or implicitly behind these different ideas. Although allocation and architecture seems to be different problems of governance at first glance, there is also a link between limited data availability for allocation calculations and the form of governance architecture proposed. This is an area where further scientific research is required.


Allocation Architecture Greenhouse gas emission reduction Mid-term target Quantified Emission Reduction and Limitation Objectives (QERLOs) 



We are grateful for the funding provided by the Environment Research and Technology Development Fund (S-6) of the Ministry of Environment, Japan, and the Mitsui & Co., Ltd. Environmental Fund. Norichika Kanie thanks IDDRI and SciencesPo Paris for their congenial support. We are grateful to the two anonymous reviewers as well as to Frank Biermann and Ruben Zondervan for comments on earlier drafts of this article.


  1. Aggarwal, V. K. (1998). Institutional designs for a complex world. Ithaca, NY: Cornell University Press.Google Scholar
  2. Akimoto, K., & Sano, F. (2008). Global emission reduction potentials and scenarios in energy supply and end-use sectors. (2nd International workshop on sectoral emission reduction potential). Paris France: OECD.Google Scholar
  3. Aldy, J. E., Barrett, S., & Stavins, R. N. (2003). Thirteen plus one: A comparison of global climate policy architectures. Climate Policy, 3(4), 373–397.CrossRefGoogle Scholar
  4. Ansell, C. K., & Weber, S. (1999). Organizing international politics. International Political Science Review, January 1999.Google Scholar
  5. Aslam, M. A. (2002). Equal per capita entitlements: A key to global participation on climate change? In K. Baumert (Ed.), Building on the Kyoto protocol options for protecting the climate (pp. 175–201). Washington DC: World Resources Institute.Google Scholar
  6. Baer, P., Athanasiou, T., Kartha, S., & Kemp-Benedict, E. (2008). The greenhouse development rights framework: The right to development in a climate constrained world. Revised second edition. (p. 112). Berlin: The Heinrich Böll Foundation, Christian Aid, EcoEquity and the Stockholm Environment Institute.Google Scholar
  7. Banuri, T., Goran-Maler, K., Grubb, M., Jacobson, H. K., & Yamin, F. (1996). Equity and social considerations. In: J. Bruce, H. Lee, E. Haites (eds) Climate change 1995: Economic and social dimensions of climate change; Contribution of Working Group III to the Second Assessment Report of the Intergovernmental Panel on Climate Change (pp. 79–124). Cambridge, UK: Cambridge University Press).Google Scholar
  8. Barrett, S. (2003). Environment and statecraft. Oxford: Oxford University Press.CrossRefGoogle Scholar
  9. Benedick, R. E. (2001). Striking a new deal on climate change. Issues in science and technology. Dallas: The University of Dallas, Texas, Fall Issue.Google Scholar
  10. Bennett, E. M., Carpenter, S. R., Peterson, G. D., Cumming, G. S., Zurek, M., & Pingali, P. L. (2003). Why global scenarios need ecology. Frontiers in Ecology and Environment, 1, 322–329.CrossRefGoogle Scholar
  11. Biermann, F. (2005). Between the USA and the south: Strategic choices for European climate policy. Climate Policy, 5(3), 273–290.CrossRefGoogle Scholar
  12. Biermann, F. (2007). ‘Earth system governance’ as a crosscutting theme of global change research. Global Environmental Change. Human and Policy Dimensions, 17, 326–337.Google Scholar
  13. Biermann, F., & Pattberg, P. (2008). Global environmental governance: Taking stock, moving forward. Annual Review of Environment and Resources, 33, 277–294.CrossRefGoogle Scholar
  14. Biermann, F., Pattberg, P., van Asselt, H., & Zelli, F. (2009a). Fragmentation of global governance architectures: A framework for analysis. Global Environmental Politics, 9(4), 14–40.CrossRefGoogle Scholar
  15. Biermann, F., Betsill, M. M., Gupta, J., Kanie, N., Lebel, L., Liverman, D., Schroeder, H., & Siebenhüner, B. (2009b). With contributions from K. Conca, L. da Costa Ferreira, B. Desai, S. Tay & R. Zondervan (2009). Earth system governance: People, places and the planet. Science and Implementation Plan of the Earth System Governance Project. Earth System Governance Report 1, IHDP Report 20. (Bonn, IHDP: The Earth System Governance Project).Google Scholar
  16. Biermann, F., Betsill, M. M., Gupta, J., Kanie, N., Lebel, L., Liverman, D., Schroeder, H., Siebenhüner, B. & Zondervan, R. (2010). Earth system governance: A research framework. International Environmental Agreements: Politics, Law and Economics, 10(4).Google Scholar
  17. Bodansky, D. (2004). International climate efforts beyond 2012: A survey of approaches. (Pew Center on Global Climate Change).Google Scholar
  18. Bradford, D. F. (2001). Succeeding Kyoto: A no cap but trade approach to greenhouse gas control. mimeo, Princeton University.Google Scholar
  19. Bulkeley, H., & Moser, S. C. (2007). Responding to climate change: Governance and social action beyond Kyoto. Global Environmental Politics, 7(2), 1–10.CrossRefGoogle Scholar
  20. Dechezlepretre, A, Glachant, M, Hascic, I, Johnstone, N., Meniere, Y (2008). Invention and transfer of climate change mitigation technologies on a global scale: A study drawing on patent data: Final Report. (CERNA, Mines ParisTech).Google Scholar
  21. den Elzen, M. G. J., & Höhne, N. (2008). Reductions of greenhouse gas emissions in Annex I and non-Annex I countries for meeting concentration stabilisation targets: An editorial comment. Climatic Change, 91, 249–274.CrossRefGoogle Scholar
  22. den Elzen, M. G. J., & Meinshausen, M. (2006). Multi-gas emission pathways for meeting the EU 2°C climate target. In H. J. Schellnhuber, W. Cramer, N. Nakicenovic, T. Wigley, & G. Yohe (Eds.), Avoiding dangerous climate change. Cambridge, UK: Cambridge University Press.Google Scholar
  23. den Elzen, M. G. J., Höhne, N., Brouns, B., Winkler, H., & Ott, H. E. (2007). Differentiation of countries’ post-2012 mitigation commitments under the South-North Dialogue Proposal. Environmental Science & Policy, 10, 185–203.CrossRefGoogle Scholar
  24. den Elzen, M. G. J., Höhne, N., & Moltmann, S. (2008). The Triptych approach revisited: A staged sectoral approach for climate mitigation. Energy Policy, 36(3), 1107–1124.CrossRefGoogle Scholar
  25. Edmonds, J., & Wise, M. (1999). Exploring a technology strategy for stabilising atmospheric CO2. In C. Carraro (Ed.), International environmental agreements on climate change (pp. 131–154). Dordrecht: Kluwer Academic Publishers.Google Scholar
  26. Eickhout, B., den Elzen, M. G. J. & van Vuuren, D. P. (2003). Multi-gas emission profiles for stabilising greenhouse gas concentrations: Emission implications of limiting global temperature increase to 2 degrees Celsius. (RIVM report 728991926/2003).Google Scholar
  27. Gallopin, G., Hammond, A., Raskin, P., & Swart, R. (1997). Branch points: Global scenarios and human choice. Global Scenarios Group. Stockholm: Stockholm Environment Institute.Google Scholar
  28. Gupta, J. & Lebel, L. (2010). Access and allocation in earth system governance: Water and climate change compared. International Environmental Agreements: Politics, Law and Economics, 10(4).Google Scholar
  29. Gupta, J., Jepma, C. J., & Blok, K. (1998). International climate change policy: Coping with differentiation. Milieu, 5(3), 264–274.Google Scholar
  30. Haas, P. M. (Ed.). (1992). Knowledge Power and international policy coordination. Columbia, USA: University of South Carolina Press.Google Scholar
  31. Haas, P. M. (2008). Climate change governance after Bali. Global Environmental Politics, 8(3), 1–7.CrossRefGoogle Scholar
  32. Haas, P. M., Keohane, R., Levy, O., & Marc, A. (Eds.). (1993). Institutions for the earth: Sources of effective international environmental protection. Cambridge, MA: The MIT Press.Google Scholar
  33. Haas, P. M., Kanie, N., & Murphy, C. N. (2004). Conclusion: Institutional design and institutional reform for sustainable development. In N. Kanie & P. M. Haas (Eds.), Emerging forces in environmental governance (pp. 263–281). Tokyo: United Nations University Press.Google Scholar
  34. Hanaoka, T., Hibino, G., Miyashita, M., Akashi, O., Matsuoka, Y., Fujino, J., & Kainuma, M. (2006). GHG emission reduction potentials and mitigation costs in world regions using the AIM/Enduse [Global] model. (The 8th International Conference on Greenhouse Gas Control Technologies, Trondheim, Norway).Google Scholar
  35. Hijioka, Y., Masui, T., Takahashi, K., Matsuoka, Y., & Harasawa, H. (2006). Development of a support tool for greenhouse gas emissions control policy to help mitigate the impact of global warming. Environmental Economics and Policy Studies, 7(3), 331–345.Google Scholar
  36. Höhne, N. (2006). What is next after the Kyoto Protocol. Assessment of options for international climate policy post-2012. (Amsterdam: Techne Press, ISBN 908594005-2).Google Scholar
  37. Höhne, N., & Ellermann, C. (2008). A sectoral approach and technology transfer for the cement sector. Ecofys, 20 August 2008, PECSDE081688.Google Scholar
  38. Höhne, N., Galleguillos, C., Blok, K., Harnisch, J. & Phylipsen, D. (2003). Evolution of commitments under the UNFCCC: Involving newly industrialized countries and developing countries. Research report 20141255, UBA-FB 000412. (Berlin: ECOFYS Gmbh).Google Scholar
  39. Höhne, N., Phylipsen, D., Ullrich, S. & Blok, K. (2005). Options for the second commitment period of the Kyoto Protocol. Research report for the German Federal Environmental Agency. Climate Change 02/05, ISSN 1611–8855 (Berlin: ECOFYS Gmbh) Available at, Berlin, Germany.
  40. Höhne, N., Worrell, E., Ellermann, C., Vieweg, M. & Hagemann, M. (2008). Sectoral approach and development. Ecofys.Google Scholar
  41. Jacoby, H. D., Schmalensee, R. & Wing, I. S. (1999). Toward a useful architecture for climate change negotiations. Report No 49. (Cambridge, MA: MIT Press).Google Scholar
  42. Kameyama, Y. (2004). The future climate regime: A regional comparison of proposals. International Environmental Agreements, Law and Economics, 4(4), 307–326.CrossRefGoogle Scholar
  43. Kanie, N. (2003). Leadership and domestic policy in multilateral diplomacy: The case of The Netherlands’ Kyoto Protocol Negotiation. International Negotiation, 8(2), 339–365.CrossRefGoogle Scholar
  44. Kanie, N. (2007). Governance with multilateral environmental agreements—A healthy or ill-equipped fragmentation? In W. Hoffmann & L. Swart (Eds.), Global environmental governance (pp. 67–86). New York: Center for UN Reform Education.Google Scholar
  45. Kanie, N. (2008). Post-2012 institutional architecture to address climate change: A proposal for effective governance (In V. I. Grover (Ed.), Global warming and climate change: Ten years after Kyoto and still counting, Vol. 2 (pp. 1065–1077). Enfield, NH: New Science Publishers.).Google Scholar
  46. Kanie, N. (2010). Green growth and a new world order. Global Asia, 4(4).Google Scholar
  47. Kanie, N., & Haas, P. M. (Eds.). (2004). Emerging forces in environmental governance. Tokyo: United Nations University Press.Google Scholar
  48. Kuik, O., Aerts, J., Berkhout, F., Biermann, F., Bruggink, J., Gupta, J., et al. (2008). Post-2012 climate policy dilemmas: A review of proposals. Climate Policy, 8(3), 317–336.CrossRefGoogle Scholar
  49. La Rovere, E. L., de Macedo, L. V., & Baumert, K. A. (2002). The Brazilian proposal on relative responsibility for global warming. In A. Baumert (Ed.), Building on the Kyoto Protocol Options for protecting the climate (pp. 157–173). Washington DC: World Resources Institute.Google Scholar
  50. Lebel, L., Thongbai, P., Kok, K., et al. (2005). Sub-global scenarios. In Millennium Ecosystem Assessment (Ed.), Ecosystems and human well-being Multiscale assessment. Findings of the sub-global assessments working group. New York: Island Press.Google Scholar
  51. Levy, M. A. (1995). International cooperation to combat acid rain. In H. O. Bergesen, G. Parmann, & Ø. B. Thommessen (Eds.), Green globe yearbook of international cooperation on environment and development 1995 (pp. 59–68). Oxford: Oxford University Press.Google Scholar
  52. Metz, B., Davidson, O. R., Bosch, P. R., Dave, R. & Meyer L. A. (Eds.) (2007). Contribution of working group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge, UK and New York, NY, USA: Cambridge University Press).Google Scholar
  53. Michaelowa, A., Butzengeiger, S., & Jung, M. (2005). Graduation and deepening: An ambitious post-2012 climate policy scenario. International Environmental Agreements: Politics, Law and Economics, 5, 25–46.CrossRefGoogle Scholar
  54. Ministry of Science and Technology (1997). Proposed elements of a protocol to the UNFCCC. (Presented by Brazil in Response to the Berlin Mandate. Government of Brazil).Google Scholar
  55. Ministry of Science and Technology. (2000). Notes on the time-dependent relationship between emissions of greenhouse gases and climate change. Brazil: Government of Brazil.Google Scholar
  56. National Institute for Environmental Studies (NIES) and Institute for Global Environmental Strategies (IGES). (2005). Framing climate protection regime: Long-term commitments and institutional options. (NIES and IGES Report).Google Scholar
  57. Okereke, C., Bulkeley, H., & Schroeder, H. (2009). Conceptualizing climate governance beyond the international regime. Global Environmental Politics, 9(1), 58–78.CrossRefGoogle Scholar
  58. Ostrom, E. (2001). Decentralization and development: The new panacea. In K. Dowding, J. Hughes, & H. Margetts (Eds.), Challenges to democracy: Ideas, involvement and institution (pp. 237–256). New York: Palgrave Publishers.Google Scholar
  59. Ott, H. E., Winkler, H., Brouns B., Kartha S., Mace, M. J., Huq S., et al. (2004). South-North dialogue on equity in the greenhouse: A proposal for an adequate and equitable global climate Agreement. May 2004, Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH.Google Scholar
  60. Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., & Hanson, C. E. (Eds.). (2007). Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
  61. Pew Center. (2009). Comparability of developed country mitigation efforts.
  62. Philibert, C. (2004). International energy technology collaboration and climate change mitigation. Paris: OECD/IEA Information Paper.Google Scholar
  63. Philibert, C. (2005). Approaches for future international cooperation. OECD/IEA COM/ENV/EPOC/IEA/SLT(2005), 6.Google Scholar
  64. Phylipsen, G. J. M., Bode, J. W., Blok, K., Merkus, H., & Metz, B. (1998). A triptych sectoral approach to burden differentiation; GHG emissions in the European bubble. Energy Policy, 26(12), 929–943.CrossRefGoogle Scholar
  65. Rajamani, L. (2000) The principle of common but differentiated responsibility and the balance of commitments under the climate regime. 9 RECIEL 120.Google Scholar
  66. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H. L. (Eds.) (2007). Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge, UK and New York, NY, USA: Cambridge University Press).Google Scholar
  67. Thomas, D. S. G., & Twyman, C. (2005). Equity and justice in climate change adaptation amongst natural-resource-dependent societies. Global Environmental Change, 15, 115–124.CrossRefGoogle Scholar
  68. Torvanger, A., et al. (2004). Climate policy beyond 2012: A survey of long-term targets and future frameworks. CICERO Report 2004:02. (Oslo: Center for International Climate and Environmental Research).Google Scholar
  69. WBGU. (2003). Climate protection strategies for the 21st century. Kyoto and beyond. Berlin: German Advisory Council on Global Change.Google Scholar
  70. Weisslitz, M. (2002). Rethinking the equitable principle of common but differentiates responsibility: Differential versus absolute norms of compliance and contribution in the global climate change context. Colorado Journal of International Environmental Law and Policy, 13, 473–509.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Norichika Kanie
    • 1
    • 2
    Email author
  • Hiromi Nishimoto
    • 3
  • Yasuaki Hijioka
    • 4
  • Yasuko Kameyama
    • 4
  1. 1.Department of Value and Decision ScienceTokyo Institute of TechnologyTokyoJapan
  2. 2.SciencesPoParisFrance
  3. 3.Kyoto UniversityKyotoJapan
  4. 4.National Institute for Environmental StudiesTsukubaJapan

Personalised recommendations