Advertisement

International Applied Mechanics

, Volume 55, Issue 5, pp 534–543 | Cite as

Thermomagnetoelastic Deformation of a Flexible Orthotropic Conical Shell with Electrical Conductivity and Joule Heat Taken into Account

  • L. V. Mol’chenkoEmail author
  • I. I. Loos
Article
  • 6 Downloads

We proposed a theory and a method for solving geometrically nonlinear problems for thermomagnetoelastic orthotropic shells taking into account Joule heat in the microsecond range. The problem fora flexible orthotropic conical shell is solved numerically taking into account orthotropic conductivity and Joule heat.

Keywords

Conical shell thermomagnetoelasticity geometric nonlinearity orthotropy Joule heat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Ambartsumyan, G. E. Bagdasaryan, and M. V. Belubekyan, Magnetoelasticity of Thin Shells and Plates [in Russian], Nauka, Moscow (1977).Google Scholar
  2. 2.
    R. E. Bellman and R. E. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems, Elsevier, New York (1965).Google Scholar
  3. 3.
    V. D. Budak, L. V. Mol’chenko, and A. V. Ovcharenko, Numerical and Analytical Solution of Boundary-Value Problems of Magnetoelasticity [in Russian], Ilion, Nikolaev (2016).Google Scholar
  4. 4.
    V. D. Budak, L. V. Mol’chenko, and A. V. Ovcharenko, Nonlinear Magnetoelastic Shells [in Russian], Ilion, Nikolaev (2016).Google Scholar
  5. 5.
    Ya. M. Grigorenko and L. V. Mol’chenko, Fundamentals of the Theory of Plates and Shells with Elements of Magnetoelasticity (Textbook) [in Russian], IPTs Kievskii Universitet, Kyiv (2010).Google Scholar
  6. 6.
    V. I. Dresvyannikov, “Nonstationary problems of the mechanics of elastoplastic conductive bodies subject to strong impulsive magnetic fields,” Prikl. Probl. Prochn. Plast., 19, 32–47 (1979).Google Scholar
  7. 7.
    A. Sommerfeld, Electrodynamics, Academic Press, New York (1964).Google Scholar
  8. 8.
    L. D. Landau, and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, Oxford (1984).Google Scholar
  9. 9.
    J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Clarendon Press, Oxford (1957).Google Scholar
  10. 10.
    Yu. I. Sirotin and M. P. Shaskol’skaya, Fundamentals of Crystal Physics [in Russian], Nauka, Moscow (1979).Google Scholar
  11. 11.
    I. E. Tamm, Fundamentals of the Theory of Electricity, Mir, Moscow (1976).Google Scholar
  12. 12.
    L. A. Shapovalov, “On simple equations of the geometrically nonlinear theory of thin shells,” Inzh. Zh. Mekh. Tverd. Tela, No. 1, 56–62 (1968).Google Scholar
  13. 13.
    Y. H. Bian, “Analysis of nonlinear stresses and strains in a thin current-carrying elastic plate,” Int. Appl. Mech., 51, No. 1, 108–120 (2015).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    R. Elhajjar, V. La Saponara, and A. Muliana, Smart Composites. Mechanics and Design, CRS Press, Boca Raton (2013).Google Scholar
  15. 15.
    A. Ya. Grigorenko, S. A. Pankrat’ev, and S. N. Yaremchenko, “Solution of stress-strain problems for complex-shaped plates in a refined formulation,” Int. Appl. Mech., 53, No. 3, 326–333 (2017).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    K. Hutter, A. A. F. Van de Ven, and A. Ursescu, Electromagnetic Field Matter Interactions in Thermoelastic Solids and Viscous Fluids, Springer, Berlin (2007).Google Scholar
  17. 17.
    C. Hwu, Anisotropic Elastic Plates, Springer, Boston (2010).Google Scholar
  18. 18.
    S. A. Kaloerov, “Determining the intensity factors for stresses electric-flux and electric-field strength in multiply connected electroelastic anisotropic media,” Int. Appl. Mech., 43, No. 6. 631–637 (2007).Google Scholar
  19. 19.
    L. V. Mol’chenko, L. N. Fedorchenko, and L. Ya. Vasilieva, “Nonlinear theory of magnetoelasticity of shells of revolution with Joule heat taken into account,” Int. Appl. Mech., 54, No. 3, 306–314 (2018).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    L. V. Mol’chenko and I. I. Loos, “Influence of conicity on the stress–strain state of a flexible orthotropic shell of revolution in a nonstationary magnetic field,” Int. Appl. Mech., 46, No. 11, 1261–1267 (2010).Google Scholar
  21. 21.
    L. V. Mol’chenko and I. I. Loos, “Thermomagnetoelastic deformation of flexible isotropic shells of revolution subject to joule heating,” Int. Appl. Mech., 55, No. 1, 68–78 (2019).ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    L. V. Mol’chenko, I. I. Loos, and R. Sh. Indiaminov, “Determining the stress state of flexible ortotropic shells of revolution in magnetic field,” Int. Appl. Mech., 44, No. 8, 882–891 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    N. M. Newmark, “A method of computation for structural dynamics,” J. Eng. Mech. Div. Proc. ASCE, 85, No. 7, 67–97 (1959).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mykolaiv V. O. Sukhomlynskyi National UniversityMykolaivUkraine

Personalised recommendations