Advertisement

International Applied Mechanics

, Volume 55, Issue 5, pp 515–523 | Cite as

Model of the Plastic Zone at the Point of Intersection of Microplastic Deformation Lines

  • A. A. Kaminsky
  • L. A. Kipnis
  • T. V. PolishchukEmail author
Article
  • 2 Downloads

A small-scale plastic zone at the point of intersection of microplastic deformation lines is identified. The problem on the plastic zone is reduced to a symmetric elasticity problem for a plane with four tangential displacement discontinuity lines emerging from this point. Two of them are semi-finite, while the other two are of finite length. The exact solution of the problem is found using the Wiener–Hopf method.

Keywords

small-scale plastic zone intersection of microplastic deformation lines tangential displacement discontinuity lines Wiener–Hopf method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. T. Berezhnitskii and N. M. Kundrat, “Plastic bands at the tip of a linear rigid inclusion,” Strength of Materials, 14, No. 11, 1502–1505 (1982).CrossRefGoogle Scholar
  2. 2.
    L. T. Berezhnitskii and N. M. Kundrat, “Origin and development of plastic strains in the neighborhood of an acute-angled rigid inclusion,” Materials Science, 19, No. 6, 538–546 (1984).CrossRefGoogle Scholar
  3. 3.
    P. M. Vitvitskii, V. V. Panasyuk, and S. Ya. Yarema, “Plastic strains in the vicinity of cracks and the criteria of fracture. A review,” Strength of Materials, 5, No. 2, 135–151 (1973).CrossRefGoogle Scholar
  4. 4.
    A. A. Kaminsky, A. S. Bykovtsev, L. A. Kipnis, and G. A. Khasin, “Stress intensity at the tips of shear cracks emerging from a point on an elastic plane,” Dop. NAN Ukrainy, No. 1, 56–58 (2005).Google Scholar
  5. 5.
    B. Noble, Methods Based on the Wiener–Hopf Technique for the Solution of Partial Differential Equations, Pergamon Press, London (1958).Google Scholar
  6. 6.
    V. V. Panasyuk, A. E. Andreikiv, and V. Z. Parton, Fundamentals of Fracture Mechanics of Materials [in Russian], Naukova Dumka, Kyiv (1988).Google Scholar
  7. 7.
    V. V. Panasyuk and M. P. Savruk, “Model of plasticity bands in elastoplastic failure mechanics,” Materials Science, 28, No. 1, 41–57 (1992).CrossRefGoogle Scholar
  8. 8.
    V. Z. Parton and P. I. Perlin, Methods of Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1981).Google Scholar
  9. 9.
    A. A. Kaminsky and Yu. A. Chernoivan, “Determination of safe static loads for polymeric composites weakened by cracks,” Int. Appl. Mech., 54, No. 4, 384–392 (2018).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    A. A. Kaminskii, L. A. Kipnis, and G. A. Khasin, “Study of the stress state near a corner point in simulating the initial plastic zone by slip bands,” Int. Appl. Mech., 37, No. 5, 647–653 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    A. A. Kaminskii, L. A. Kipnis, and G. A. Khasin, “Analysis of the plastic zone at a corner point by the trident model,” Int. Appl. Mech., 38, No. 5, 611–616 (2002).ADSCrossRefGoogle Scholar
  12. 12.
    A. A. Kaminskii, L. A. Kipnis, and T. V. Polishchuk, “Stress state near a small-scale crack at the corner point of the interface of media,” Int. Appl. Mech., 54, No. 5, 506–518 (2018).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    A. A. Kaminskii, L. A. Kipnis, and T. V. Polishchuk, “Cottrell crack nucleation condition,” Int. Appl. Mech., 54, No. 6, 642–652 (2018).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A. A. Kaminskii and E. E. Kurchakov, “Influence of tension along a mode I crack in an elastic body on the formation of a nonlinear zone,” Int. Appl. Mech., 51, No. 2, 130–148 (2015).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    A. A. Kaminskii and M. F. Selivanov, “Modelling subcritical crack growth in a viscoelastic body under concentrated forces,” Int. Appl. Mech., 53, No. 5, 538–544 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    A. A. Kaminsky, M. F. Selivanov, and Yu. A. Chernoivan, “Kinetics of mode I crack growth in a viscoelastic polymeric material with nanoinclusions,” Int. Appl. Mech., 54, No. 1, 34–40 (2018).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    K. K. Lo, “Modeling of plastic yielding at a crack tip by inclined slip planes,” Int. J. Fract., 15, No. 6, 583–589 (1979).CrossRefGoogle Scholar
  18. 18.
    J. R. Rice, “Limitations to the small scale yielding approximation for crack tip plasticity,” J. Mech. Phys. Solids, 22, No. 1, 17–26 (1974).ADSCrossRefGoogle Scholar
  19. 19.
    H. Ridel, “Plastic yielding on inclined slip-planes at a crack tip,” J. Mech. Phys. Solids, 24, No. 5, 277–289 (1976).ADSCrossRefGoogle Scholar
  20. 20.
    M. F. Selivanov, “Slow growth of a crack with contacting faces in viscoelastic bodies,” Int. Appl. Mech., 53, No. 6, 617–622 (2017).ADSCrossRefGoogle Scholar
  21. 21.
    V. Vitek, “Yielding on inclined planes at the tip of a crack loaded in uniform tension,” J. Mech. Phys. Solids, 24, No. 5, 263–275 (1976).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Kaminsky
    • 1
  • L. A. Kipnis
    • 2
  • T. V. Polishchuk
    • 2
    Email author
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Pavlo Tychina Unam State Pedagogical UniversityUmanUkraine

Personalised recommendations