Advertisement

International Applied Mechanics

, Volume 55, Issue 5, pp 459–469 | Cite as

Propagation of Quasi-Lamb Waves in an Elastic Layer Interacting with a Viscous Liquid Half-Space

  • A. N. Guz
  • A. M. BagnoEmail author
Article
  • 8 Downloads

The propagating of quasi-Lamb waves in an elastic layer that interacts with a half-space of a viscous compressible fluid is studied. The three-dimensional linearized Navier–Stokes equations for the viscous fluid and the linear equations of the classical theory of elasticity for the elastic layer are used to plot the dispersion curves and to study the propagation of quasi-Lamb waves over a wide frequency range. The effect of the viscous compressible fluid and the thickness of the elastic layer on the phase velocities and attenuation coefficients of quasi-Lamb modes is analyzed. The approach developed and the results obtained allow establishing the limits of applicability of the ideal fluid model. The numerical results are presented in the form of graphs and analyzed.

Keywords

elastic layer half-space of viscous compressible fluid quasi-Lamb modes phase velocity attenuation coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. A. Viktorov, Surface Acoustic Waves in Solids [in Russian], Nauka, Moscow (1981).Google Scholar
  2. 2.
    M. M. Vol’kenshtein and V. M. Levin, “Structure of a Stoneley wave at the interface between a viscous fluid and a solid,” Akust. Zh., 34, No. 4, 608–615 (1988).Google Scholar
  3. 3.
    A. N. Guz, General Issues, Vol. 1 of the two-volume series Elastic Waves in Prestressed Bodies [in Russian], Naukova Dumka, Kyiv (1986).Google Scholar
  4. 4.
    A. N. Guz, Propagation Laws, Vol. 2 of the two-volume series Elastic Waves in Prestressed Bodies [in Russian], Naukova Dumka, Kyiv (1986).Google Scholar
  5. 5.
    A. N. Guz, Dynamics of Compressible Viscous Fluid [in Russian], A.S.K., Kyiv (1998).Google Scholar
  6. 6.
    A. N. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses [in Russian], A.S.K., Kyiv (2004).Google Scholar
  7. 7.
    A. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses, Part 1: General Principles. Waves in Unbounded Bodies and Surface Waves [in Russian], LAP LAMBERT Academic Publishing, Saarbrucken (2016).Google Scholar
  8. 8.
    A. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses, Part 2: Waves in Partially Bounded Bodies [in Russian], LAP LAMBERT Academic Publishing, Saarbrucken (2016).Google Scholar
  9. 9.
    A. N. Guz, An Introduction to the Dynamics of Compressible Viscous Fluid [in Russian], LAP LAMBERT Academic Publishing RU, Saarbrucken (2017).Google Scholar
  10. 10.
    A. N. Guz, A. P. Zhuk, and F. G. Makhort, Waves in a Prestressed Layer [in Russian], Naukova Dumka, Kyiv (1976).Google Scholar
  11. 11.
    A. M. Bagno, “Effect of prestresses on the dispersion of quasi-Lamb waves in the system consisting of an ideal liquid layer and a compressible elastic layer,” Int. Appl. Mech., 53, No. 2, 139–148 (2017).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    A. M. Bagno, “Dispersion properties of Lamb waves in an elastic layer–ideal liquid half-space system,” Int. Appl. Mech., 53, No. 6, 609–616 (2017).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    A. M. Bagno and A. N. Guz, “Elastic waves in pre-stressed bodies interacting with a fluid (survey),” Int. Appl. Mech., 33, No. 6, 435–463 (1997).ADSCrossRefGoogle Scholar
  14. 14.
    B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: A review,” NDT & E Int., 39, No. 7, 525–541 (2006).CrossRefGoogle Scholar
  15. 15.
    A. Gibson and J. Popovics, “Lamb wave basis for impact-echo method analysis,” J. Eng. Mech., 131, No. 4, 438–443 (2005).CrossRefGoogle Scholar
  16. 16.
    A. N. Guz, “Aerohydroelasticity problems for bodies with initial stresses,” Int. Appl. Mech., 16, No. 3, 175–190 (1980).ADSMathSciNetzbMATHGoogle Scholar
  17. 17.
    A. N. Guz, “Compressible, viscous fluid dynamics (review). Part 1,” Int. Appl. Mech., 36, No. 1, 14–39 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    A. N. Guz, “The dynamics of a compressible viscous liquid (review). II,” Int. Appl. Mech., 36, No. 3, 281–302 (2000).ADSCrossRefGoogle Scholar
  19. 19.
    A. N. Guz, Dynamics of Compressible Viscous Fluid, Cambridge Scientific Publishers, Cambridge (2009).zbMATHGoogle Scholar
  20. 20.
    A. N. Guz, “On the foundations of the ultrasonic non-destructive determination of stresses in near-the-surface layers of materials. Review,” J. Phys. Sci. Appl., 1, No. 1, 1–15 (2011).Google Scholar
  21. 21.
    A. N. Guz, “Ultrasonic nondestructive method for stress analysis of structural members and near-surface layers of materials: Focus on Ukrainian research (review),” Int. Appl. Mech., 50, No. 3, 231–252 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    A. N. Guz and A. M. Bagno, “Effect of liquid viscosity on dispersion of quasi-Lamb waves in an elastic-layer–viscous-liquid-layer system,” Int. Appl. Mech., 53, No. 4, 361–367 (2017).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    A. N. Guz, A. P. Zhuk, and A. M. Bagno, “Dynamics of elastic bodies, solid particles, and fluid parcels in a compressible viscous fluid (review),” Int. Appl. Mech., 52, No. 5, 449–507 (2016).ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    K. Y. Jhang, “Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review,” Int. J. Precis. Eng. Manufact., 10, No. 1, 123–135 (2009).CrossRefGoogle Scholar
  25. 25.
    S. S. Kessler, S. M. Spearing, and C. Soutis, “Damage detection in composite materials using Lamb wave methods,” Smart Mater. Struct., 11, No. 2, 269–279 (2002).ADSCrossRefGoogle Scholar
  26. 26.
    M. Kobayashi, S. Tang, S. Miura, K. Iwabuchi, S. Oomori, and H. Fujiki, “Ultrasonic nondestructive material evaluation method and study on texture and cross slip effects under simple and pure shear states,” Int. J. Plasticity, 19, No. 6, 771–804 (2003).CrossRefGoogle Scholar
  27. 27.
    K. R. Leonard, E. V. Malyarenko, and M. K. Hinders, “Ultrasonic Lamb wave tomography,” Inverse Problems, 18, No. 6, 1795–1808 (2002).ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    L. Liu and Y. Ju, “A high-efficiency nondestructive method for remote detection and quantitative evaluation of pipe wall thinning using microwaves,” NDT & E Int., 44, No. 1, 106–110 (2011).CrossRefGoogle Scholar
  29. 29.
    M. Ottenio, M. Destrade, and R. W. Ogden, “Acoustic waves at the interface of a pre-stressed incompressible elastic solid and a viscous fluid,” Int. J. Non-Lin. Mech., 42, No. 2, 310–320 (2007).CrossRefGoogle Scholar
  30. 30.
    C. Ramadas, K. Balasubramaniam, M. Joshi, and C. V. Krishnamurthy, “Interaction of the primary anti-symmetric Lamb mode (Ao) with symmetric delaminations: numerical and experimental studies,” Smart Mater. Struct., 18, No. 8, 1–7 (2009).CrossRefGoogle Scholar
  31. 31.
    N. S. Rossini, M. Dassisti, K. Y. Benyounis, and A. G. Olabi, “Methods of measuring residual stresses in components,” Materials & Design, 35, 572–588 (2012).CrossRefGoogle Scholar
  32. 32.
    M. Spies, “Analytical methods for modeling of ultrasonic nondestructive testing of anisotropic media,” Ultrasonics, 42, No. 1–9, 213–219 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations