Advertisement

Technique of Allowing for Plastic Strains Under Unloading in Thermoplasticity Problems for Axisymmetric Bodies

  • V. G. SavchenkoEmail author
  • M. E. Babeshko
Article

The nonaxisymmetric elastoplastic stress–strain state of bodies of revolution under nonisothermal combined loading is analyzed with allowance for secondary plastic strains. The study is based on the use of the constitutive equations of the theory of small-curvature processes and finite-element method. The model of elastic unloading of a material with perfect Bauschinger effect and isotropic hardening is employed. Numerical examples illustrate how the choice of an unloading model affects the results obtained.

Keywords

thermoplasticity bodies of revolution nonaxisymmetric stress–strain state isotropic material elastic unloading perfect Bauschinger effect isotropic hardening secondary plastic strain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. I. Bezukhov, V. L. Bazhanov, I. I. Gol’denblat, et al., Design for Strength, Stability, and Vibrations at High Temperatures [in Russian], Mashinostroenie, Moscow (1965).Google Scholar
  2. 2.
    I. A. Birger, B. F. Shorr, I. V. Dem’yanushko, et al., Thermal Strength of Machine Parts [in Russian], Mashinostroenie, Moscow (1975).Google Scholar
  3. 3.
    Ya. M. Grigorenko, Yu. N. Shevchenko, et al., Numerical Methods, Vol. 11 of the 12-volume series Composite Mechanics [in Russian], “A.S.K”, Kyiv (2002).Google Scholar
  4. 4.
    Yu. N. Shevchenko, M. E. Babeshko, V. V. Piskun, and V. G. Savchenko, Spatial Thermoplasticity Problems [in Russian], Naukova Dumka, Kyiv (1980).zbMATHGoogle Scholar
  5. 5.
    Yu. N. Shevchenko, M. E. Babeshko, and R. G. Terekhov, Thermoviscoplastic Processes of Combined Deformation of Structural Members [in Russian], Naukova Dumka, Kyiv (1992).Google Scholar
  6. 6.
    Yu. N. Shevchenko and V. G. Savchenko, Thermoviscoplasticity, Vol. 2 of the five-volume series Mechanics of Coupled Fields in Structural Members [in Russian], Naukova Dumka, Kyiv (1987).Google Scholar
  7. 7.
    Yu. N. Shevchenko, V. G. Savchenko, and D. A. Ishchenko, Method and Software for Analysis of the Nonstationary Heat Conduction in and the Elastoplastic Stress–Strain State of Structural Members such as Solids of Revolution under Axisymmetric Mechanical and Thermal Loads [in Russian], Guidelines, Inst. Mekh. AN USSR, Kyiv (1988).Google Scholar
  8. 8.
    Yu. N. Shevchenko, V. G. Savchenko, D. A. Ishchenko, and V. M. Pavlychko, Method and Applied Software for Analysis of the Nonstationary Heat Conduction in and the Elastoplastic Stress–Strain State of Structural Members such as Solids of Revolution under Axisymmetric Mechanical and Thermal Loads [in Russian], Recommendations R 54-284-90, VNIINMASh, Moscow (1990).Google Scholar
  9. 9.
    M. E. Babeshko and V. G. Savchenko, “Axisymmetric elastoplastic state of compound shells subject to thermal and mechanical loading and radiation exposure,” Int. Appl. Mech., 53, No. 4, 368–373 (2017).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    M. E. Babeshko and V. G. Savchenko, “Analyzing processes of nonisothermal loading of shells of revolution with allowance for repeated plastic strains,” Int. Appl. Mech., 53, No. 6, 639–646 (2017).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    M. E. Babeshko and V. G. Savchenko, “On allowance for the third invariant of stress deviator in analysis of processes of deformation of thin shells,” Int. Appl. Mech., 54, No. 2, 163–171 (2018).ADSCrossRefGoogle Scholar
  12. 12.
    M. E. Babeshko and V. K. Stryuk, “Calculating the stress state of a solid cylinder on the basis of the theory of flow with isotropic hardening,” Sov. Appl. Mech., 10, No. 6, 587–591 (1974).ADSCrossRefGoogle Scholar
  13. 13.
    V. A. Bazhenov, M. O. Vabishchevich, I. I. Solodei, and E. A. Chepurnaya, “Semianalytic finite-element method in dynamic problems of linear fracture mechanics,” Int. Appl. Mech., 54, No. 5, 519–530 (2018).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Hencky, “Zur theorie der plastischer deformationen und der hierdurch im material hervorgerufenen nachspannungen,” ZAMM, 4, No. 4, 323–334 (1924).ADSCrossRefGoogle Scholar
  15. 15.
    D. A. Ishchenko and V. G. Savchenko, “Influence of taking account of secondary plastic deformations on the solution of the axisymmetric thermoplasticty problem,” Sov. Appl. Mech., 24, No. 3, 229–233 (1988).ADSCrossRefGoogle Scholar
  16. 16.
    L. Prandtl, “Anwendungsbeispile zu einem Henckyschen satz uber das platische gleichgewicht,” ZAMM, 3, No. 6, 401–406 (1923).ADSCrossRefGoogle Scholar
  17. 17.
    A. Reuss, “Berucksichtigung der elastischen formanderung in der plastizitatstheorie,” ZAMM, 10, No. 3, 266–274 (1930).ADSCrossRefGoogle Scholar
  18. 18.
    V. G. Savchenko and M. E. Babeshko, “Thermostressed state of layered bodies of revolution damaging under deformation,” Int. Appl. Mech., 54, No. 3, 287–305 (2018).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Yu. N. Shevchenko and V. G. Savchenko, “Three-dimensional problems of thremoviscoplasticity: focus on Ukrainian research (Review),” Int. Appl. Mech., 52, No. 3, 217–271 (2016).ADSCrossRefGoogle Scholar
  20. 20.
    E. A. Storozhuk, I. S. Chernyshenko, and O. V. Pigol’, “Elastoplastic state of an elliptical cylindrical shell with a circular hole,” Int. Appl. Mech., 53, No. 6, 647–654 (2017).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    M. Zyczkowskii, Combined Loadings in the Theory of Plasticity, PWN, Polish Scientific Publishers, Warsaw (1981).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations