Asymmetric Deformation of Shells of Revolution of Variable Stiffness in a Nonstationary Magnetic Field

  • L. V. Mol’chenkoEmail author
  • I. I. Loos

A theory and method for solving the magnetoelasticity problems of shells of revolution of variable stiffness in two directions in a microsecond range are proposed. A numerical example is given.


shell of revolution magnetic field variable stiffness magnetoelasticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Ambartsumyan, G. E. Bagdasaryan, and M. V. Belubekyan, Magnetoelasticity of Thin Shells and Plates [in Russian], Nauka, Moscow (1977).Google Scholar
  2. 2.
    R. E. Bellman and R. E. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems, Elsevier, New York (1965).Google Scholar
  3. 3.
    V. D. Budak, L. V. Mol’chenko, and A. V. Ovcharenko, Nonlinear Magnetoelectric Shells [in Russian], Ilion, Nikolaev (2016).Google Scholar
  4. 4.
    S. K. Godunov, “Numerical solution of boundary-value problems for systems of linear ordinary differential equations,” Usp. Mat. Nauk, 16, No.5, 171–174 (1963).Google Scholar
  5. 5.
    Ya. M. Grigorenko and L. V. Mol’chenko, Fundamentals of the Theory of Plates and Shells with Magnetoelasticity Elements [in Russian], VPTs “Kyivs’kyi Univ.,” Kyiv (2010).Google Scholar
  6. 6.
    I. E. Tamm, Fundamentals of the Theory of Electricity [in Russian], Nauka, Moscow (1976).Google Scholar
  7. 7.
    Y. H. Bian, “Analysis of nonlinear stresses and strains in a thin current-carrying elastic plate,” Int. Appl. Mech., 51, No. 1, 108–120 (2015).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    A. I. Dorfmann and R. W. Ogden, Nonlinear Theory of Electroelastic and Magnetoelastic Interactions, Springer, New York (2013).Google Scholar
  9. 9.
    A. E. Green and P. M. Naghdi, “On electromagnetic effects in the theory of shells and plates,” Phil. Trans. Royal Soc., A 309, 559–610 (1983).Google Scholar
  10. 10.
    K. Hutter and A. A. Van de Ven, Field Matter Interactions in Physics, No. 80, 339–368 (1967).Google Scholar
  11. 11.
    G. A. Maugin, Continuum Mechanics and Electromagnetism, Springer, New York (2013).Google Scholar
  12. 12.
    L. V. Mol’chenko, “A method for solving two-dimensional nonlinear boundary-value problems of magnetoelasticity for thin shells,” Int. Appl. Mech., 41, No. 5, 490–495 (2005).MathSciNetCrossRefGoogle Scholar
  13. 13.
    L. V. Mol’chenko, L. N. Fedorchenko, and L. Yu. Vasil’eva, “Nonlinear theory of magnetoelasticity of shells of revolution with Joule heat taken into account,” Int. Appl. Mech., 54, No. 3, 306–314 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    L. V. Mol’chenko and I. I. Loos, “Thermomagnetoelastic deformation of flexible isotropic shells of revolution subject to Joule heating,” Int. Appl. Mech., 55, No. 1, 68–78 (2019).Google Scholar
  15. 15.
    L. V. Mol’chenko, I. I. Loos, and L. N. Fedorchenko, “Deformation of a flexible orthotropic spherical shell of variable stiffness in a magnetic field,” Int. Appl. Mech., 52, No. 1, 56–61 (2016).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    F. C. Moon, Magneto-Solid Mechanics, Wiley, New York (1984).Google Scholar
  17. 17.
    N. M. Newmark, “Method of computation for structural dynamics,” J. Eng. Mech. Div. Proc. ASCE, 85, No. 7, 67–97 (1959).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.V. O. Sukhomlynsky National University of MykolayivMykolayivUkraine

Personalised recommendations