Determination of the Natural Frequencies of Compound Anisotropic Shell Systems Using Various Deformation Models

  • E. I. BespalovaEmail author
  • N. P. Boreiko

An approach to determining the natural frequencies and modes of compound systems of shells of revolution of different geometry and relative thickness, continuously and/or discretely inhomogeneous across the thickness is proposed. The shells are made of isotropic, orthotropic, and anisotropic materials with a single plane of elastic symmetry. The approach involves construction of a mathematical model based on the classical Kirchhoff–Love theory, Timoshenko-type refined theory, spatial elasticity theory (particular case), and numerical-analytical technique of solving associated two- and three-dimensional problems by reducing their dimension and using the successive approximation and step-by-step search methods in combination with the orthogonal sweep method. Examples of solving various problems in different fields of engineering are presented.


compound shells of revolution natural frequencies and modes classical refined and spatial elasticity theory numerical-analytical technique 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. E. Bellman and R. E. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems, Elsevier, New York (1965).zbMATHGoogle Scholar
  2. 2.
    S. K. Godunov, “Numerical solution of boundary-value problems for systems of linear ordinary differential equations,” Usp. Mat. Nauk, 16, No. 3, 171–174 (1961).MathSciNetGoogle Scholar
  3. 3.
    Ya. M. Grigorenko, E. I. Bespalova, A. B. Kitaigorodskii, and A. I. Shinkar, Free Vibrations of Elements of Shell Structures [in Russian], Naukova Dumka, Kyiv (1986).Google Scholar
  4. 4.
    Ya. M. Grigorenko and A. T. Vasilenko, Theory of Shells of Varying Stiffness, Vol. 4 of the five-volume series Methods of Shell Design [in Russian], Naukova Dumka, Kyiv (1981).Google Scholar
  5. 5.
    Von L. Collatz, Eigenvalue Problems with Engineering Applications [in German], Akad. Verlagsges., Leipzig (1963).Google Scholar
  6. 6.
    S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Body [in Russian], Mir, Moscow (1977).Google Scholar
  7. 7.
    V. D. Budak, A. Ya. Grigorenko, M. Yu. Borisenko, and E. V. Boichuk, “Frequencies and modes of natural vibrations of noncircular cylindrical shells of variable thickness,” Int. Appl. Mech., 53, No. 2, 164–172 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    M. Caresta and N. J. Kessissoglou, “Free vibrational characteristics of isotropic coupled cylindrical-conical shells,” J. ound Vibr., 329, 733–784 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    L. Cheng and J. Nicolas, “Free vibration analysis of a cylindrical shell-circular plate system with general coupling and various boundary conditions,” J. Sound Vibr., 155, 231–247 (1992).ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    D. Chronopoulos, M. Ichchou, B. Troclet, and O. Bareille, “Predicting the broadband response of a layered cone-cylinder-cone shell,” Compos. Struct., 107, 149–159 (2014).CrossRefGoogle Scholar
  11. 11.
    A. Ya. Grigorenko, T. L. Efimova, and Yu. A. Korotkikh, “Free vibrations of non-thin cylindrical shells of a variable thickness with elliptic cross-section,” Int. Appl. Mech., 53, No. 6, 668–679 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    W. C. L. Hu and J. P. Raney, “Experimental and analytical study of vibrations of joined shells,” AIAA J., 5, No. 5, 976–981 (1967).ADSCrossRefGoogle Scholar
  13. 13.
    E. Kamke, Differentialgleichungen. Losungmethoden und Losungen. I Gewonliche Differentialgleichungen, 6th Verbesserte-Auflage, Leipzig (1959).Google Scholar
  14. 14.
    Y. S. Lee, M. S. Yang, Y. S. Kim, and J. H. Kim, “A study on the free vibration of the joined cylindrical-spherical shell structures,” Compos. Struct., 80, No. 27–30, 2405–2414 (2002).CrossRefGoogle Scholar
  15. 15.
    S. Liang and H. L. Chen, “The natural vibration of a conical shell with an annular end plate,” J. Sound Vibr., 294, 927–943 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    A. V. Marchuk, S. V. Gniedash, and S. A. Levkovsky, “Free and forced vibrations of thick-walled anisotropic cylindrical shells,” Int. Appl. Mech., 53, No. 2, 181–195 (2017).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Y. Qu, S. Wu, Y. Chen, and Y. Hua, “Vibration analysis of ring-stiffened conical-cylindrical-spherical shells based on a modified variational approach,” Int. J. Mech. Sci., 69, 72–84 (2013).CrossRefGoogle Scholar
  18. 18.
    B. P. Patel, M. Ganapathi, and S. Kamat, “Free vibration characteristics of laminated composite joined conical-cylindrical shells,” J. Sound Vibr., 237, 920–930 (2000).ADSCrossRefGoogle Scholar
  19. 19.
    M. Shakouri and M. A. Kouchakzadeh, “Free vibration analysis of joined conical shells: analytical and experimental tudy,” J. Thin-Walled Struct., 85, 350–358 (2014).CrossRefGoogle Scholar
  20. 20.
    X. C. Shang, “Exact analysis for three vibration of a composite shell structure-hermetic capsule,” Appl. Math. Mech., 22, 1035–1045 (2001).CrossRefzbMATHGoogle Scholar
  21. 21.
    Z. Su and G. Jin, “Vibration analysis of coupled conical-cylindrical-spherical shells using a Fourier spectral element method,” J. Acoust. Soc. Am., 140, No. 5, 3925–3940 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    C. K. Susheel, T. K. Rajeev Kumar, and Vishal Singh Chauhan, “Nonlinear vibration analysis of piezolaminated functionally graded cylindrical shells,” Int. J. Nonlin. Dynam. Cont., 1, No. 1, 27–50 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations