International Applied Mechanics

, Volume 54, Issue 1, pp 94–103 | Cite as

Chaotic Synchronization in Models of Impulsive Power Systems with Delay

Article
  • 6 Downloads

Global complete chaos synchronization in impulsive power systems with delay is studied. The sufficient conditions of exponential synchronization are established based on the theory of stability of impulsive differential equations with delay. Illustrative examples that demonstrate the applicability and effectiveness of the obtained results are given.

Keywords

power systems Lyapunov stability Lyapunov method impulsive systems with delay chaos synchronization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. R. Gantmacher, Matrix Theory [in Russian], Nauka, Moscow (1966).Google Scholar
  2. 2.
    I. L. Ivanov, “An approach to study of the stability of impulsive systems with delay,” Mat. Probl. Mekh. Obchysl. Mat., 12, No. 5, 30–38 (2015).Google Scholar
  3. 3.
    R. M. Kronover, Fractals and Chaos in Dynamic Systems [in Russian], Postmarket, Moscow (2000).Google Scholar
  4. 4.
    M. Tabor, Chaos and Integrability in Nonlinear Dynamics, Wiley, New York (1989).MATHGoogle Scholar
  5. 5.
    H. G. Schuster, Deterministic Chaos: An Introduction, Wiley, New York (1995).Google Scholar
  6. 6.
    G. Chen and X. Dong, From Chaos to Order. Methodologies, Perspectives and Applications, World Scientific, Singapore (1998).Google Scholar
  7. 7.
    I. L. Ivanov and A. A. Martynyuk, “Stability results for delay power system under impulsive perturbations,” Communications in Applied Analysis, 15, No. 2, 275–286 (2015).Google Scholar
  8. 8.
    I. L. Ivanov and V. I. Slyn’ko, “A stability criterion for autonomous linear time-lagged systems subject to periodic impulsive force,” Int. Appl. Mech., 49, No. 6, 732–742 (2013).ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    A. E. Hramov and A. A. Koronovskii, “An approach to chaotic synchronization,” Chaos, 14, No. 3, 603–610 (2004).Google Scholar
  10. 10.
    C.-H. Huang, C.-H. Lin, and C. L. Kuo, “Chaos synchronization-based detector for power-quality disturbances classification in a power system,” IEEE Trans. on Power Delivery, 26, No. 2, 944–953 (2011).CrossRefGoogle Scholar
  11. 11.
    V. Lakshmikantam, D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore (1989).CrossRefGoogle Scholar
  12. 12.
    X. Li and M. Bohner, “Exponential synchronization of chaotic neural networks with mixed delays and impulsive effects via output coupling with delay feedback,” Math. Comp. Modell., 52, No. 5, 643–653 (2010).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    J.-S. Lin, Y.-S. Yang, M.-L. Hung, T.-L. Liao, and J.-J. Yan, “Observer design for chaos synchronization of time-delayed power systems,” Proc. of World Academy of Science, Engineering and Technology, 4, No. 5, 498–501 (2010).Google Scholar
  14. 14.
    Q. Lin and X. Wu, “The sufficient criteria for global synchronization of chaotic power systems under linear state-error feedback control,” Nonlinear Analysis: Real World Applications, 12, No. 3, 1500–1509 (2011).Google Scholar
  15. 15.
    A. A. Martynyuk, “Elements of the theory of stability of hybrid systems (review),” Int. Appl. Mech., 51, No. 3, 243–302 (2015).ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    A. A. Martynyuk and N. V. Nikitina, “Bifurcations and multistability of the oscillations of a three-dimensional system,” Int. Appl. Mech., 51, No. 2, 223–232 (2015).ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett., 64, 821–824 (1990).ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    M. G. Rosemblum, A. S. Pikovsky, and J. Kurths, “From phase to lag synchronization in coupled chaotic oscillators,” Phys. Rev. Lett., 78, No. 22, 4193– 4196 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “Phase synchronization of chaotic oscillators,” Phys. Rev. Lett., 76, No. 11, 1804–1807 (1996).ADSCrossRefMATHGoogle Scholar
  20. 20.
    N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel, “Generalized synchronization of chaos in directionally coupled chaotic systems,” Phys. Rev. E, 51, No. 2, 980–994 (1995).ADSCrossRefGoogle Scholar
  21. 21.
    E. M. Shahverdiev, L. H. Hashimova, and N. T. Hashimova, “Chaos synchronization in some power systems,” Chaos Solitons and Fractals, 37, No. 3, 829–834 (2008).Google Scholar
  22. 22.
    J. C. Sprott, Chaos and Time-series Analysis, Oxford University Press, Oxford (2003).MATHGoogle Scholar
  23. 23.
    R. L. Taylor, “Attractors: Nonstrange to chaotic,” SIAM, Undergraduate Research Online, 72–80 (2010).Google Scholar
  24. 24.
    H. U. Voss, “Anticipating chaotic synchronization,” Phys. Rev. E, 61, 5115–5119 (2000).ADSCrossRefGoogle Scholar
  25. 25.
    P. Yang, Z. Tan, A. Wiesel, and A. Nehorai, “Power system state estimation using PMUs with imperfect synchronization,” IEEE Trans. on Power Systems, 28, No. 4, 4162–4172 (2013).CrossRefGoogle Scholar
  26. 26.
    Y. Yang and J. Cao, “Exponential lag synchronization of a class of chaotic delayed neural networks with impulsive effects,” Physica A: Statistical Mechanics and Its Applications, 386, No. 1, 492–502 (2007).Google Scholar
  27. 27.
    J. Zhou, L. Xiang, and Z. Liu, “Synchronization in complex delayed dynamical networks with impulsive effects,” Physica A: Statistical Mechanics and Its Applications, 384, No. 2, 684–692 (2007).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations