International Applied Mechanics

, Volume 50, Issue 5, pp 549–557 | Cite as

Numerical Analysis of the Stability of a Laminated Composite with Uniaxially Compressed Reinforcement Plies

  • V. A. Ferret
  • V. S. Zelenskii
  • V. M. Bistrov

The three-dimensional linearized theory of stability and a piecewise-homogeneous material model are used to determine numerically the stability-critical parameters of a laminated composite with compressed reinforcement plies. Mixed boundary conditions (regular material structure and symmetric surface loading) on the sides of a composite specimen and boundary conditions for stresses on one side that is free of stresses are analyzed. It is established that the critical load depends on the ratio of the geometrical and mechanical characteristics of the composite components and the composite specimen as a whole. The effect of the inhomogeneity of the initial state due to the surface loading on the buckling modes is studied. It is shown that the composite undergoes microbuckling near the loaded surface with buckling modes damped with distance from the end, which is the end-crushing failure mechanism in composites


composite laminate uniaxial longitudinal compression critical load buckling mode three-dimensional linearized theory of stability end crushing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies [in Russian], Vyshcha Shkola, Kyiv (1986).Google Scholar
  2. 2.
    A. N. Guz, Fundamentals of the Fracture Mechanics of Compressed Composites [in Russian], in two vols., Litera, Kyiv (2008).Google Scholar
  3. 3.
    A. N. Guz and Yu. V. Kokhanenko, “Numerical analysis of stability problems for composites (review),” Prikl. Mekh., 40, No. 11, 117–126 (2004).zbMATHGoogle Scholar
  4. 4.
    Ya. M. Grigorenko, Yu. N. Shevchenko, A. T. Vasilenko, et al., Numerical Methods, Vol. 11 of the 12-volume series Mechanics of Composite Materials [in Russian], A.S.K., Kyiv (2002).Google Scholar
  5. 5.
    V. S. Zelenskii, V. A. Dekret, and V. M. Bystrov, “Stability of a composite laminate at uniaxial loading,” in: Trans. Dniprodzerzhinsk State Technical University [in Ukrainian], Issue 2(19) (Mathematical Problems of Engineering Mechanics), DDTU, Dniprodzerzhinsk (2012), pp. 49–53.Google Scholar
  6. 6.
    Yu. V. Kokhanenko, “Brittle end-crushing failure of composites,” Dokl. AN SSSR, 296, No. 4, 805–808 (1987).Google Scholar
  7. 7.
    J. E. Akin, Finite Element Analysis Concepts: via SolidWorks, World Scientific, Hackensack, NJ (2010).CrossRefGoogle Scholar
  8. 8.
    E. J. Barbero, Finite Element Analysis of Composite Materials Using ANSYS, CRC Press (2013),
  9. 9.
    E. Yu. Bashchuk and V. Yu. Baichuk, “Influence of the inhomogeneity of the principal stress state on the critical loads of a plate with a crack,” Int. Appl. Mech., 49, No. 3, 328–336 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    N. A. Fleck, “Compressive failure of fiber composites,” Adv. Appl. Mech., 33, 43–117 (1997).CrossRefGoogle Scholar
  11. 11.
    L. B. Greszczuk, “Microbuckling failure of lamina-reinforced composites,” in: 3rd Conf. on Composite Materials: Testing and Design, ASTM STP N 546, Philadelphia (Pa) (1974), pp. 5–29.Google Scholar
  12. 12.
    L. B. Greszczuk, “Microbuckling failure of circular fiber-reinforced composites,” AIAA J., 13, 1311–1318 (1975).ADSCrossRefGoogle Scholar
  13. 13.
    A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies, Springer-Verlag, Berlin (1999).CrossRefzbMATHGoogle Scholar
  14. 14.
    A. N. Guz and V. A. Dekret, “On two models in the three-dimensional theory of stability of composites,” Int. Appl. Mech., 44, No. 8, 839–854 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    A. N. Guz, “On study of nonclassical problems of fracture and failure mechanics and related mechanisms,” Int. Appl. Mech., 45, No. 1, 1–31 (2009).ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    A. N. Guz, “Setting up a theory of stability of fibrous and laminated composites,” Int. Appl. Mech., 45, No. 6, 587–613 (2009).ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    A. N. Guz, “Stability of elastic bodies under omnidirectional compression (review),” Int. Appl. Mech., 48, No. 3, 241–293 (2012).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    A. N. Guz, I. A. Guz, A. V. Men’shikov, and V. A. Men’shikov, “Three-dimensional problems in the dynamic fracture mechanics of materials with interface cracks (review),” Int. Appl. Mech., 49, No. 1, 1–61 (2013).ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    P. M. Jelf and N. A. Fleck, “Compression failure mechanisms in unidirectional composites,” J. Comp. Mater., 26, No. 18, 2706–2726 (1992).CrossRefGoogle Scholar
  20. 20.
    Yu. V. Kokhanenko and V. M. Bystrov, “Edge effect in a laminated composite with longitudionally compressed laminas,” Int. Appl. Mech., 42, No. 8, 922–927 (2006).ADSCrossRefGoogle Scholar
  21. 21.
    N. K. Naik and R. S. Kumar, “Compressive strength of unidirectional composites: evaluation and comparison of prediction models,” Comp. Struct., 46, 299–308 (1999).CrossRefGoogle Scholar
  22. 22.
    M. D. Nestorovic and N. Triantafyllidis, “Onset of failure in finitely strained layered composites subjected to combined normal and shear loading,” J. Mech. Phys. Solids, 52, 941–974 (2004).ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    S. Pissanetzky, Sparse Matrix Technology, Academic Press, London (1984).zbMATHGoogle Scholar
  24. 24.
    B. W. Rosen, “Mechanics of composite strengthening,” in: Fiber Composite Materials, American Society of Metals, Metals Park, OH (1965), pp. 37–75.Google Scholar
  25. 25.
    C. Soutis, Compressive Behavior of Composites, Rapra Technology, London (1997).Google Scholar
  26. 26.
    N. Triantafyllidis and W. C. Scynaidt, “Comparison of microscopic and macroscopic instabilities in a class of two-dimensional periodic composites,” J. Mech. Phys. Solids, 41, No. 9, 1533–1565 (1993).ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    T. J. Vogler, S.-Y. Hsu, and S. Kyriakides, “Composite failure under combined compression and shear,” Int. J. Solids Struct., 37, No. 12, 1765–1791 (2000).CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. A. Ferret
    • 1
  • V. S. Zelenskii
    • 1
  • V. M. Bistrov
    • 1
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations