Advertisement

International Applied Mechanics

, Volume 49, Issue 4, pp 388–455 | Cite as

Deformation and Damage of Composites with Anisotropic Components (Review)

  • L. P. Khoroshun
  • L. V. Nazarenko
Article

A statistical model describing the coupled deformation and damage of composites with porous transversely isotropic and orthotropic components is proposed. The mechanism of microdamage of such composites is studied assuming that the microstrength of the material is inhomogeneous. A singlemicrodamage is modeled by an empty quasispherical pore forming in place of a microvolume damaged in accordance with the Huber–Mises failure criterion. The ultimate microstrength is assumed to be a random function of coordinates with Weibull one-point distribution density. The method of conditional moments, the damage balance equations, and the Newton–Raphson method are used to set up an algorithm to calculate the effective deformation characteristics of composite materials depending on macrostrains. The effect of the damage of the material on the macrostress–macrostrain relationship is established. The influence of the mechanical characteristics of the material, the volume fraction and porosity of its components, the geometrical parameters of its structure, and the distribution of microstrength on the damage and macrostress–macrostrain curves of the material is analyzed

Keywords

short-fiber-reinforced composite stochastic structure anisotropic components stress–strain state microdamage porosity effective characteristics porosity balance equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. N. Aptukov, “Continuous anisotropic damage model,” in: Deformation and Fracture of Structurally Inhomogeneous Materials [in Russian], AN SSSR. Ural. Otd., Sverdlovsk (1992) pp. 41–52.Google Scholar
  2. 2.
    V. N. Aptukov and V. L. Belousov, “A model of anisotropic damage for bodies. Communication 1. General relationships,” Strength of Materials, 26, No. 2, 110–115 (1994).Google Scholar
  3. 3.
    N. N. Afanas’ev, Statistical Theory of the Fatigue Strength of Metals [in Russian], Izd. AN USSR, Kyiv (1953).Google Scholar
  4. 4.
    V. V. Bolotin, “Stochastic damage models for unidirectional fibrous composites,” Mekh. Komp. Mater., No. 3, 404–420 (1981).Google Scholar
  5. 5.
    A. A. Vakulenko and L. M. Kachanov, “Continuum theory of medium with cracks,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 4, 159–166 (1971).Google Scholar
  6. 6.
    G. A. Vanin, Micromechanics of Composite Materials [in Russian], Naukova Dumka, Kyiv (1985).Google Scholar
  7. 7.
    S. D. Volkov, Statistical Strength Theory, Gordon & Breach, New York (1962).Google Scholar
  8. 8.
    V. P. Golub, “Nonlinear mechanics of damage and its applications,” in: Crack Resistance of Materials and Structural Members [in Russian], Naukova Dumka, Kyiv (1980), pp. 19–20.Google Scholar
  9. 9.
    V. P. Golub, “Creep damage accumulation: Nonlinear models,” Probl. Mashinostr. Avtomatiz., No. 1, 51–58 (1992).Google Scholar
  10. 10.
    V. P. Golub, “Constitutive equations in nonlinear damage mechanics,” Int. Appl. Mech., 29, No. 10, 794–804 (1993).MathSciNetADSGoogle Scholar
  11. 11.
    I. V. Grushetskii, M. Ya. Mikel’son, and V. P. Tamuzs, “Change in stiffness of unidirectionally oriented fibrous composite material due to crushing of fibers,” Mech. Comp. Mater., 18, No. 2, 139–144 (1982).Google Scholar
  12. 12.
    A. N. Guz, L. P. Khoroshun, G. A. Vanin, et al., Materials Mechanics, Vol. 1 of the three-volume series Mechanics of Composite Materials and Structural Members [in Russian], Naukova Dumka, Kyiv (1982).Google Scholar
  13. 13.
    N. N. Davidenkov, Fatigue of Metals [in Russian], Izd. AN USSR, Kyiv (1947).Google Scholar
  14. 14.
    L. M. Kachanov, Fundamentals of Fracture Mechanics [in Russian], Nauka, Moscow (1974).Google Scholar
  15. 15.
    J. A. Collings, Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention, Wiley & Sons, New York (1981).Google Scholar
  16. 16.
    V. P. Kogaev, Strength Analysis when Stresses are Time Dependent [in Russian], Mashinostroenie, Moscow (1977).Google Scholar
  17. 17.
    V. I. Kondaurov, “Modeling the processes of damage accumulation and dynamic failure in solids,” in: Studying the Properties of Substances in Extreme Conditions [in Russian], IVTAN, Moscow (1990), pp. 145–152.Google Scholar
  18. 18.
    T. A. Kontorova and O. A. Timoshenko, “Statistical theory of strength generalized to inhomogeneous stress state,” Zh. Tekhn. Fiz., 19, No. 3, 119–121 (1949).Google Scholar
  19. 19.
    T. A. Kontorova and Ya. I. Frenkel’, “Statistical theory of the brittle strength of real crystals,” Zh. Tekhn. Fiz., 11, No. 3, 173–183 (1941).Google Scholar
  20. 20.
    I. M. Kop’ev and A. S. Ovchinskii, Fracture of Fiber-Reinforced Metals [in Russian], Nauka, Moscow (1977).Google Scholar
  21. 21.
    A. F. Kregers, “Mathematical modeling of the thermal expansion of spatially reinforced composites,” Mech. Comp. Mater., 24, No. 3, 316–325 (1988).Google Scholar
  22. 22.
    R. M. Christensen, Mechanics of Composite Materials, Wiley, New York (1979).Google Scholar
  23. 23.
    V. S. Kuksenko, “Diagnostics and forecasting of breakage of large-scale objects,” Phys. Solid State, 47, No. 5, 812–816 (2005).ADSGoogle Scholar
  24. 24.
    S. A. Lurie, “Damage accumulation in composite materials: An entropy model,” in: Abstracts 3rd All-Union Conf. on Mechanics of Inhomogeneous Structures [in Russian], Pt. 2, Lviv, September 17–19 (1991), p. 198.Google Scholar
  25. 25.
    S. A. Lurie, I. I. Krivolutskaya, and A. R. Vvedenskii, “Accumulation of dispersed damages in composite materials: A micromechanical entropy model,” Tekhn. Ser. Konstr. Komp. Mater., No. 1, 5–12 (1995).Google Scholar
  26. 26.
    A. N. Guz, L. P. Khoroshun, G. A. Vanin, et al., Materials Mechanics, Vol. 1 of the three-volume series Mechanics of Composite Materials and Structural Members [in Russian], Naukova Dumka, Kyiv (1982).Google Scholar
  27. 27.
    L. V. Nazarenko, “Influence of microdamages on the deformation properties of anisotropic materials,” Dop. NAN Ukrainy, No. 10, 63–67 (1999).Google Scholar
  28. 28.
    L. V. Nazarenko, “Deformation of transversely isotropic short-fiber-reinforced composites with microdamaged matrix,” Dokl. NAN Ukrainy, No. 11, 49–54 (2002).Google Scholar
  29. 29.
    L. V. Nazarenko, “Deformation properties and long-term damage of orthotropic fibrous composites with long-term strength described by a fractional-power function,” Visn. Donetsk. Nats. Univ., Ser. A. Pryrodn. Nauky, No. 2, pt. 1, 94–102 (2008).Google Scholar
  30. 30.
    L. V. Nazarenko, “Long-term damage of transversely isotropic composites with long-term strength described by a fractional-power function,” Dokl. NAN Ukrainy, No. 4, 62–67 (2008).Google Scholar
  31. 31.
    L. V. Nazarenko, “Deformation properties of transversely isotropic composites subject to long-term damage when long-term microstrength is described by a stretched exponential function,” Dokl. NAN Ukrainy, No. 5, 75–81 (2008).Google Scholar
  32. 32.
    L. V. Nazarenko, “Deformation properties and long-term damage of composites with orthotropic inclusions when long-term microstrength is described by a fractional-power function,” Dokl. NAN Ukrainy, No. 8, 72–77 (2008).Google Scholar
  33. 33.
    L. V. Nazarenko, “Deformation and short-term damage of a material reinforced with orthotropic continuous fibers,” Teor. Prikl. Mekh., 44, 29–38 (2008).Google Scholar
  34. 34.
    L. V. Nazarenko, “Long-term damage of short-fiber-reinforced composites with orthotropic inclusions and long-term microstrength described by a stretched exponential function,” Dokl. NAN Ukrainy, No. 1, 63–70 (2009).Google Scholar
  35. 35.
    L. V. Nazarenko, L. P. Khoroshun, V. H. Muller, and B. R. Wille, “Application of the method of conditional moments to investigating the deformation properties of orthotropic composites with fiber microdamages,” Mech. Comp. Mater., 45, No. 1, 11–20 (2009).Google Scholar
  36. 36.
    L. V. Nazarenko, “Deformation of a fibrous material with orthotropic components and microdamaged fibers,” Dokl. NAN Ukrainy, No. 5, 66–72 (2009).Google Scholar
  37. 37.
    E. S. Pereverzev, Damage Accumulation Models in Durability Problems [in Russian], Naukova Dumka, Kyiv (1995).Google Scholar
  38. 38.
    Y. N. Rabotnov, Creep Problems in Structural Members, North-Holland, Amsterdam (1969).Google Scholar
  39. 39.
    A. R. Rzhanitsin, Theory of Structural Reliability Design [in Russian], Stroiizdat, Moscow (1978).Google Scholar
  40. 40.
    R. D. Salganik, “Mechanics of bodies with many cracks,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 4, 149–158 (1973).Google Scholar
  41. 41.
    L. G. Sedrakyan, Statistical Strength Theory [in Russian], Izd. Arm. Inst. Stroimater. Sooruzh., Yerevan (1958).Google Scholar
  42. 42.
    S. V. Serensen, Fatigue of Materials and Structural Members [in Russian], Vol. 2, Naukova Dumka, Kyiv (1985).Google Scholar
  43. 43.
    N. K. Snitko, “Structural theory of the strength of metals,” Zh. Tekhn. Fiz., 18, No. 6, 857–864 (1948).Google Scholar
  44. 44.
    V. P. Tamuzs, “Calculation of elasticity parameters of a material with defects,” Mech. Comp. Mater., 13, No. 5, 702–708 (1977).Google Scholar
  45. 45.
    V. P. Tamuzs, “Features of the failure of heterogeneous materials,” in: Strength and Failure of Composites [in Russian], Zinatne, Riga (1983), pp. 28–32.Google Scholar
  46. 46.
    V. P. Tamuzs and V. S. Kuksenko, Microfracture Mechanics of Polymeric Materials [in Russian], Zinatne, Riga (1978).Google Scholar
  47. 47.
    Ya. B. Fridman, Unified Theory of the Strength of Metals [in Russian], Oborongiz, Moscow (1952).Google Scholar
  48. 48.
    L. P. Khoroshun, “Methods of theory of random functions in problems of macroscopic properties of microinhomogeneous media,” Int. Appl. Mech., 14, No. 2, 113–124 (1978).MathSciNetADSMATHGoogle Scholar
  49. 49.
    L. P. Khoroshun, “Conditional-moment method in problems of the mechanics of composite materials,” Int. Appl. Mech., 23, No. 10, 989–996 (1987).ADSMATHGoogle Scholar
  50. 50.
    L. P. Khoroshun, B. P. Maslov, E. N. Shikula, and L. V. Nazarenko, Statistical Mechanics and Effective Properties of Materials, Vol. 3 of the 12-volume series Mechanics of Composite Materials [in Russian], Naukova Dumka, Kyiv (1993).Google Scholar
  51. 51.
    B. B. Chechulin, “Statistical brittle strength theory revisited,” Zh. Tekhn. Fiz., 24, No. 2, 41–48 (1954).Google Scholar
  52. 52.
    E. M. Shevadin, I. A. Razov, R. E. Reshetnikova, and B. N. Serpenikov, “Nature of the scale effect in failure of metals,” DAN SSSR, 113, No. 5, 1057–1060 (1957).Google Scholar
  53. 53.
    T. D. Shermergor, Theory of Elasticity of Microinhomogeneous Media [in Russian], Nauka, Moscow (1977).Google Scholar
  54. 54.
    J. Baaran, L. Karger, and A. Wetzel, “Stiffness and failure behaviour of folded sandwich cores under combined transverse shear and compression: Proceedings of the Institution of Mechanical Engineers, Part G,” J. Aerospace Eng., 222, No. 2, 179–188 (2008).Google Scholar
  55. 55.
    M.-H. Berger and D. Jeulin, “Statistical analysis of the failure stresses of ceramic fibers: Dependence of the Weibull parameters on the gauge length, diameter variation and fluctuation of defect density,” J. Mater. Sci., 38, 2913–2923 (2003).ADSGoogle Scholar
  56. 56.
    J. G. Berryman, “Effective medium theories for multicomponent poroelastic composites,” J. Eng. Mech., 132, No. 5, 519–531 (2006).Google Scholar
  57. 57.
    D. Breysse, “Probabilistic formulation of damage-evolution law of cementitious composites,” J. Eng. Mech., 116, No. 7, 1489–1510 (1990).Google Scholar
  58. 58.
    B. Budiansky, “On the elastic moduli of some heterogeneous materials,” J. Mech. Phys. Solids, 13, No. 4, 223–227 (1965).ADSGoogle Scholar
  59. 59.
    P. P. Camanho, C. G. Davila, S. T. Pinho, L. Iannucci, and P. Robinson, “Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear,” Composites. Part A: Applied Sci. Manufact., 37, No. 2, 165–176 (2006).Google Scholar
  60. 60.
    P. P. Castaneda, “The effective mechanical properties of nonlinear isotropic solids,” J. Mech. Phys. Solids, 39, No. 1, 45–71 (1991).MathSciNetADSMATHGoogle Scholar
  61. 61.
    P. P. Castaneda, “Exact second-order estimates for the effective mechanical properties of nonlinear composite materials,” J. Mech Phys. Solids, 44, No. 6, 827–862 (1996).MathSciNetADSMATHGoogle Scholar
  62. 62.
    P. P. Castaneda and P. Suquet, “Nonlinear composites,” Adv. Appl. Mech., 34, 171–302 (1998).Google Scholar
  63. 63.
    J. L. Chaboche, “Phenomenological aspects of continuum damage mechanics,” in: Proc. 17th Int. Congr. on Theoretical and Applied Mechanics (Grenoble, August 21–27, 1988), Amsterdam (1989), pp. 41–56.Google Scholar
  64. 64.
    S. Chandrakanth and P.C. Pandey, “An isotropic damage model for ductile material,” Eng. Fract. Mater., 50, No. 4, 457–465 (1995).Google Scholar
  65. 65.
    C. L. Choy, W. P. Leung, K. W. Kowk, and F. P. Lau, “Elastic moduli and thermal conductivity of injectionmolded short fiber reinforced thermoplastics,” Polym. Comp., 13, 69–80 (1992).Google Scholar
  66. 66.
    R. M. Christensen, “A critical evaluation for a class of micro-mechanics models,” J. Mech. Phys. Solids, 38, No. 3, 379–404 (1990).ADSGoogle Scholar
  67. 67.
    W. A. Curtin, “Theory of mechanical properties of ceramic-matrix composites,” J. Amer. Ceram. Soc., 74, No. 11, 2837–2845 (1991).Google Scholar
  68. 68.
    W. A. Curtin, “Tensile strength of fiber-reinforced composites: III Beyond the traditional Weibull model for fiber strength,” J. Compos. Mater., 34, No. 15, 1302–1332 (2000).Google Scholar
  69. 69.
    G. Cusatis, Z. Bazant, and L. Cedolin, “Confinement-shear lattice model for concrete damage in tension and compression: I. Theory,” Int. J. Eng. Mech., 123, No. 12, 1439–1448 (2003).Google Scholar
  70. 70.
    F. Desrumaux, F. Meraghni, and L. Benzeggagh, “Generalised Mori–Tanaka scheme to model anisotropic damage using numerical Eshelby tensor,” J. Compos. Mater., 35, No. 7, 603–623 (2001).ADSGoogle Scholar
  71. 71.
    A. M. Freudental and E. F. Gumbel, “Physical and statistical aspects of fatigue,” Adv. Appl. Mech., No. 4, 117–168 (1956).Google Scholar
  72. 72.
    P. Gudmunson and S. Ostlund, “Numerical verification of a procedure for calculation of elastic constants in micro-cracking composite laminates,” J. Compos. Mater., 26, No. 17, 2480–2492 (1992).ADSGoogle Scholar
  73. 73.
    A. N. Guz, “On one two-level model in the mesomechanics of cracked composites,” Int. Appl. Mech., 39, No. 3, 274–285 (2003).ADSGoogle Scholar
  74. 74.
    R. Hill, “On a class of constitutive relations for nonlinear infinitesimal elasticity,” J. Mech. Phys. Solids, 35, No. 5, 565–576 (1987).ADSMATHGoogle Scholar
  75. 75.
    M. Kachanov, I. Sevostianov, and B. Shafiro, “Explict cross-property correlations for porous materials with anisotropic microstructures,” J. Mech. Phys. Solids, 49, 1–25 (2001).MathSciNetADSMATHGoogle Scholar
  76. 76.
    P. I. Kattan and G. Z. Voyiadjis, “Micromechanical modeling of damage in uniaxially loaded unidirectional fiber-reinforced composite laminate,” Int. J. Solids Struct., 30, No. 1, 19–36 (1993).MATHGoogle Scholar
  77. 77.
    L. P. Khoroshun, P. V. Leshchenko, and L. V. Nazarenko, “Prediction of the thermoelastic properties of laminar and fibrous composites with orthotropic components,” Int. Appl. Mech., 24, No. 3, 216–223 (1988).ADSMATHGoogle Scholar
  78. 78.
    L. P. Khoroshun, P. V. Leshchenko, and L. V. Nazarenko, “Effective thermoelastic constants of discretely-fibrous composites with anisotropic components,” Int. Appl. Mech., 24, No. 10, 955–961 (1988).ADSMATHGoogle Scholar
  79. 79.
    L. P. Khoroshun and L. V. Nazarenko, “Thermoelasticity of orthotropic composites with ellipsoidal inclusions,” Int. Appl. Mech., 26, No. 9, 805–812 (1990).ADSMATHGoogle Scholar
  80. 80.
    L. P. Khoroshun and L. V. Nazarenko, “Effective elastic properties of composites with disoriented anisotropic ellipsoidal inclusions,” Int. Appl. Mech., 28, No. 12, 801–808 (1992).ADSGoogle Scholar
  81. 81.
    L. P. Khoroshun, “Principles of the micromechanics of material damage. 1. Short-term damage,” Int. App. Mech., 34, No. 10, 1035–1041 (1998).Google Scholar
  82. 82.
    L. P. Khoroshun, “Micromechanics of short-term thermal microdamageability,” Int. Appl. Mech., 37, No. 9, 1158–1165 (2001).ADSGoogle Scholar
  83. 83.
    L. P. Khoroshun and L. V. Nazarenko, “A model of the short-term damageability of a transversally isotropic material,” Int. Appl. Mech., 37, No. 1, 66–74 (2001).MathSciNetADSGoogle Scholar
  84. 84.
    L. P. Khoroshun and L. V. Nazarenko, “Deformation and microdamage of a discrete-fibrous composite with transversely isotropic components,” Int. Appl. Mech., 39, No. 6, 696–703 (2003).ADSGoogle Scholar
  85. 85.
    L. P. Khoroshun, L. V. Nazarenko, W. H. Muller, and R. Wille, “Homogenization of unidirectional and arbitrarily oriented fiber-reinforced materials by the method of conditional moments,” Proc. Appl. Math. Mech., 8, 10451–10452 (2008).Google Scholar
  86. 86.
    L. P. Khoroshun and L. V. Nazarenko, “Elastic properties and long-term damage of transversely isotropic composites with stress-rupture microstrength described by a fractional-power function,” Int. Appl. Mech., 45, No. 1, 57–65 (2009).MathSciNetADSGoogle Scholar
  87. 87.
    L. P. Khoroshun and L. V. Nazarenko, “Long-term damage of discrete-fiber-reinforced composites with transversely isotropic inclusions and stress-rupture microstrength described by an exponential power function,” Int. Appl. Mech., 45, No. 2, 125–133 (2009).MathSciNetADSGoogle Scholar
  88. 88.
    L. P. Khoroshun and L. V. Nazarenko, “Coupled processes of deformation and damage of composites with orthotropic inclusions and unbounded rupture-stress function,” Int. Appl. Mech., 45, No. 3, 272–281 (2009).MathSciNetADSGoogle Scholar
  89. 89.
    L. P. Khoroshun and L. V. Nazarenko, “Deformation and long-term damage of orthotropic composites with limited stress-rupture microstrength,” Int. Appl. Mech., 45, No. 4, 389–400 (2009).MathSciNetADSGoogle Scholar
  90. 90.
    V. Kushch and I. Sevostianov, “Effective elastic moduli tensor of particulate composite with transversely isotropic phases,” Int. J. Solid Struct., 41, 885–906 (2004).MATHGoogle Scholar
  91. 91.
    P. F. Liu and J. Y. Zheng, “Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics,” Mater. Scien. Eng., A, 485, 711–717 (2008).Google Scholar
  92. 92.
    V. A. Lubarda, D. Krajcinovic, and S. Mastilovic, “Damage model for brittle elastic solids with unequal tensile and compressive strength,” Eng. Fract. Mech., 49, No. 5, 681–697 (1994).Google Scholar
  93. 93.
    K. Z. Markov, “Elementary micromechanics of heterogeneous media,” in: K. Z. Markov and L. Preziozi (eds.), Heterogeneous Media: Micromechanics Modeling Methods and Simulations, Birkhauser, Boston (2000), pp. 1–162.Google Scholar
  94. 94.
    G. W. Milton and R. V. Kohn, “Variational bounds on the effective moduli of anisotropic composites,” J. Mech. Phys. Solids, 36, No. 5, 597–629 (1988).MathSciNetADSMATHGoogle Scholar
  95. 95.
    G. W. Milton, The Theory of Composites, Cambridge Univ. Press, Cambridge (2002).MATHGoogle Scholar
  96. 96.
    T. Mura, Micromechanics of Defects in Solids, Martinus Nijhoff, Dortrecht, The Netherlands (1987).Google Scholar
  97. 97.
    O. B. Naimark, “Defect-induced transitions as mechanisms of plasticity and failure in multifield continua,” in: Gianfranco Capriz and Paolo Maria Mariano (eds.), Advances in Multifield Theories for Continua with Substructure, Springer-Verlag, Basel (2004), pp. 75–115.Google Scholar
  98. 98.
    L. V. Nazarenko, “Elastic properties of materials with ellipsoidal pores,” Int. Appl. Mech., 32, No. 1, 46–53 (1996).ADSMATHGoogle Scholar
  99. 99.
    L. V. Nazarenko, “Thermoelastic properties of orthotropic porous materials,” Int. Appl. Mech., 33, No. 2, 114–121 (1997).Google Scholar
  100. 100.
    L. V. Nazarenko, “Three-component discretely-fibrous composites under matrix microdamaging,” J. Comp. Appl. Mech., 6, No. 2, 285–294 (2005).MATHGoogle Scholar
  101. 101.
    L. V. Nazarenko, “Nonlinear deformation of three-component composites,” Proc. Appl. Math. Mech., 6, 405–406 (2006).Google Scholar
  102. 102.
    L. V. Nazarenko, “Deformation of orthotropic composites with unidirectional ellipsoidal inclusions under matrix microdamages,” Mat. Met. Fiz.-Mekh. Polya, 51, No. 1, 121–130 (2008).MATHGoogle Scholar
  103. 103.
    L. V. Nazarenko, “Deformation and short-term microdamaging of the material strengthened by infinite orthotropic fibers,” Theor. Appl. Mech., 44, 29–38 (2008).Google Scholar
  104. 104.
    L. V. Nazarenko, “Deformative properties of granular-fiber composites under matrix microdamaging,” Appl. Probl. Math. Mech., 6, 146–153 (2008).Google Scholar
  105. 105.
    L. V. Nazarenko, L. P. Khoroshun, W. H. Muller, and R. Wille, “Effective thermoelastic properties of discrete-fiber reinforced materials with transversally-isotropic components,” Contin. Mech. Thermodyn., 20, 429–458 (2009).MathSciNetADSMATHGoogle Scholar
  106. 106.
    L. V. Nazarenko, “Deformation of composites with arbitrarily oriented orthotropic fibers under matrix microdamages,” J. Math. Sci., 167, No. 2, 217–231 (2010).Google Scholar
  107. 107.
    L. V. Nazarenko, “Damageability of material reinforced with unidirectional orthotropic fibers for an exponential-power function of long-term microstrength,” J. Math. Sci., 168, No. 5, 653–664 (2010).Google Scholar
  108. 108.
    L. V. Nazarenko, L. P. Khoroshun, W. H. Muller, and R. Wille, “Deformation and damaging of composites with transversally-isotropic components under compressive loading,” Proc. Appl. Math. Mech., 10, 129–130 (2010).Google Scholar
  109. 109.
    S. Nomura and D. L. Ball, “Stiffness reduction due to multiple microcracks in transverse isotropic media,” Eng. Fract. Mech., 48, No. 5, 649–653 (1994).ADSGoogle Scholar
  110. 110.
    R. J. O’Connell and B. B. Budiansky, “Seismic velocities in dry and saturated cracked solids,” J. Geophys. Research, 79, No. 35, 5412–5426 (1974).ADSGoogle Scholar
  111. 111.
    G. Pijaudier-Cabot and Z. P. Bazant, “Nonlocal damage theory,” J. Eng. Mech., 113, No. 10, 1512–1533 (1987).Google Scholar
  112. 112.
    I. Sevostianov and M. Kachanov, “Explicit cross-property correlations for anisotropic two-phase composite materials,” J. Mech. Phys. Solids, 50, 253–282 (2002).MathSciNetADSMATHGoogle Scholar
  113. 113.
    I. Sevostianov, N. Yilmaz, V. Kushch, and V. Levin, “Effective elastic properties of matrix composites with transversely-isotropic phases,” Int. J. Solids Struct., 42, 455–476 (2005).MATHGoogle Scholar
  114. 114.
    I. Sevostianov and M. Kachanov, “Explicit cross-property correlations for composites with anisotropic inhomogeneities,” J. Mech. Phys. Solids, 55, 2181–2205 (2007).MathSciNetADSMATHGoogle Scholar
  115. 115.
    Shen Wei, “A constitutive relation of elasto-brittle material with damage and its application,” Acta. Mech. Sin., 23, No. 3, 374–378 (1991).Google Scholar
  116. 116.
    T. Ramesh, “Continuum modelling of damage in ceramic matrix composites,” Mech. Mater., 12, No. 2, 165–180 (1991).MathSciNetGoogle Scholar
  117. 117.
    V. Tamuzs, S. Tarasovs, and U. Vilks, “Delamination properties of translaminar-reinforced composites,” Comp. Sci. Techn., No. 8, 1423–1431 (2003).Google Scholar
  118. 118.
    S. C. Tan and R. J. Nuismer, “A theory for progressive matrix cracking in composite,” J. Comp. Mater., 23, No. 10, 1029–1047 (1989).Google Scholar
  119. 119.
    S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Springer-Verlag, Berlin (2002).Google Scholar
  120. 120.
    L. J. Walpole, “Elastic behaviour of composite-materials—Theoretical foundations,” Adv. Appl. Mech., 21, 169–242 (1981).MATHGoogle Scholar
  121. 121.
    W. A. Weibull, “A statistical theory of the strength of materials,” Proc. Roy. Swed. Inst. Eng. Res., No. 151, 5–45 (1939).Google Scholar
  122. 122.
    J. R. Willis, “The overall elastic response of composite materials,” J. Appl. Mech., 50, No. 4B, 1202–1209 (1983).ADSMATHGoogle Scholar
  123. 123.
    J. R. Willis, “Elasticity theory of composites,” in: Mechanics of Solids, The Rodney Hill 60th Anniversary Volume, Pergamon Press, Oxford (1982), pp. 653–686.Google Scholar
  124. 124.
    J. R. Willis, Micromechanics and Inhomogeneity, The Toshio Mura Anniversary Volume, Springer, New York (1989).Google Scholar
  125. 125.
    P. J. Withers, “The determination of the elastic field of an ellipsoidal inclusion in a transversally isotropic medium, and its relevance to composite materials,” Philos. Mag., A, 59, 759–781 (1989).ADSGoogle Scholar
  126. 126.
    F. K. Wittel, F. Kun, B. H. Kroplin, and H. J. Herrmann, “A study of transverse ply cracking using a discrete element method,” Comp. Mat. Sci., 28, No. 3–4, 608–619 (2003).Google Scholar
  127. 127.
    J. Zhou and Y. Lu, “A damage evolution equations of particle-filled composite materials,” Eng. Fract. Mech., 40, No. 3, 499–506 (1991).MathSciNetGoogle Scholar
  128. 128.
    J. Zhou, Li Aili, and Yu Fangru, “The stress–strain law of elastic body with microcracks,” Acta Mech. Sin., 26, No. 1, 49–59 (1994).Google Scholar
  129. 129.
    Y. T. Zhu, W. R. Blumenthal, and B. L. Zhou, “Characterizing size dependence of ceramic-fiber strength using modified Weibull distribution,” in: Micromechanics of Advanced Materials, TMS, Warrendale (1995), pp. 493–497.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Materials Mechanics Group — Simulation of Solids and StructuresHelmholtz-Zentrum Geesthacht, Institute of Materials ResearchGeesthachtGermany

Personalised recommendations