Advertisement

International Applied Mechanics

, Volume 49, Issue 2, pp 220–231 | Cite as

Determining the Parameters of Fractional Exponential Hereditary Kernels for Nonlinear Viscoelastic Materials

  • V. P. Golub
  • Ya. V. Pavlyuk
  • P. V. Fernati
Article

The parameters of fractional-exponential hereditary kernels for nonlinear viscoelastic materials are determined. Methods for determining the parameters used in the third-order theory of viscoelasticity and in nonlinear theories based on the similarity of primary creep curves and the similarity of isochronous creep curves are analyzed. The parameters of fractional-exponential hereditary kernels are determined and tested against experimental data for microplastic, TC-8/3-250 glass-reinforced plastics, SVAM glass-reinforced plastics. The results (tables and plots) are analyzed

Keywords

nonlinear theories of viscoelasticity fractional exponential hereditary kernel creep curve isochronous creep curve 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. S. Vorotnikov and L. Kh. Papernik, “Application of nonlinear hereditary strain theory to description of stress relaxation in metals, and conversion of relaxation data to creep,” J. Appl. Mech. Techn. Phys., 11, No. 6, 971–974 (1970).ADSCrossRefGoogle Scholar
  2. 2.
    V. P. Golub, Yu. M. Kobzar’, and P. V. Fernati, “Calculating the linear creep strains of viscoelastic fibers under tension,” Int. Appl. Mech., 41, No. 5, 543–551 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    V. P. Golub, A. D. Pogrebnyak, and I. B. Romanenko, “Application of smoothing spline approximations in problems on identification of creep parameters,” Int. Appl. Mech., 33, No. 6, 477–484 (1997).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Il’yushin and B. E. Pobedrya, Fundamentals of the Mathematical Theory of Thermoviscoelasticity [in Russian], Nauka, Moscow (1970).Google Scholar
  5. 5.
    M. A. Koltunov, Creep and Relaxation [in Russian], Vysshaya Shkola, Moscow (1976).Google Scholar
  6. 6.
    N. K. Kucher, M. P. Zemtsov, and E. L. Danil’chuk, “Short-term creep and strength of fibrous polypropylene structures,” Strength of Materials, 39, No. 6, 620–629 (2007).CrossRefGoogle Scholar
  7. 7.
    R. D. Maksimov and E. Plume, “Long-term creep of hybrid aramid/glass-fiber-reinforced plastics,” Mech. Comp. Mater., 37, No. 4, 271–280 (2001).CrossRefGoogle Scholar
  8. 8.
    M. M. Martirosyan, “Transient creep of glass-reinforced plastic,” Mech. Comp. Mater., 1, No. 2, 38–42 (1965).Google Scholar
  9. 9.
    Y. N. Rabotnov, Elements of Hereditary Solid Mechanics, Mir, Moscow (1980).MATHGoogle Scholar
  10. 10.
    Yu. N. Rabotnov, A. Kh. Papernik, and E. I. Stepanychev, “Nonlinear creep of TS8/3-250 glass-reinforced plastic,” Mech. Comp. Mater., 7, No. 3, 351–356 (1971).Google Scholar
  11. 11.
    M. I. Rozovskii, “Creep and stress-rupture of materials,” Zh. Tekh. Fiz., 21, No. 11, 1311–1318 (1951).Google Scholar
  12. 12.
    V. P. Golub, Yu. M. Kobzar’, and V. S. Ragulina, “A method for determining the parameters of the hereditary kernels in the nonlinear theory of viscoelasticity,” Int. Appl. Mech., 47, No. 3, 290–301 (2011).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    V. P. Golub, “Application of fractional exponential hereditary kernels in the nonlinear theory of viscoelasticity,” Int. Appl. Mech., 47, No. 6, 727–734 (2011).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    H. Leaderman, Elastic and Creep Properties of Filaments Materials and Other High Polymers, Textile Foundation, Washington (1943).Google Scholar
  15. 15.
    J. J. More, B. S. Garbow, and K. E. Hillstrom, User’s Guide to Minipack, Argone National Laboratory Publication ANL-80-74 (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations