Advertisement

International Applied Mechanics

, Volume 49, Issue 1, pp 102–113 | Cite as

Determining the Parameters of the Hereditary Kernels of Nonlinear Viscoelastic Materials in Tension

  • V. P. Golub
  • Yu. M. Kobzar’
  • V. S. Ragulina
Article

A method of determining the parameters of the hereditary kernels in a viscoelastic model with time-independent nonlinearity is tested. The parameters are determined by fitting the discrete values of the kernels that are obtained considering the similarity of isochronous creep curves and instantaneous deformation curve. The discrete values of the kernels in the zone of singularity are found using weight functions. The Abel function, a combination of power and exponential functions, and fractional-exponential functions are used as hereditary kernels. The method is tested by analyzing the creep, creep recovery, and stress relaxation in laminated composites, polymeric binders, and fiber reinforcements under uniaxial tension

Keywords

nonlinear viscoelasticity parameters of heredity kernels creep stress relaxation similarity function discrete values of kernel weight function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. N. Bokshitskii, Stress-Rupture Strength of Polymers [in Russian], Khimiya, Moscow (1978).Google Scholar
  2. 2.
    V. P. Golub, Yu. M. Kobzar’, and V. S. Ragulina, ”A method for determining the parameters of the hereditary kernels in the nonlinear theory of viscoelasticity,” Int. Appl. Mech., 47, No. 3, 290–301 (2011).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    V. P. Golub, Yu. M. Kobzar’, and P. V. Fernati, ”Nonlinear creep of unidirectional fibrous composites tensioned along the reinforcement,” Int. Appl. Mech., 43, No. 5, 491–503 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    V. P. Golub, A. D. Pogrebnyak, and I. B. Romanenko, ”Application of smoothing spline approximations in problems on identification of creep parameters,” Int. Appl. Mech., 33, No. 6, 477–484 (1997).ADSCrossRefGoogle Scholar
  5. 5.
    V. P. Golub, ”Long-term nonlinear creep of viscoelastic unidirectional fibrous composites under tension,” Visn. Donetsk. Univ., Ser. A. Pryrodn. Nauky, Pt. 1, 97–101 (2006).Google Scholar
  6. 6.
    V. P. Il’in, L. E. Mal’tsev, and V. G. Sokolov, Design of Structures Made of Viscoelastic Materials [in Russian], Stroiizdat, Leningrad (1991).Google Scholar
  7. 7.
    M. A. Koltunov, Creep and Relaxation [in Russian], Vysshaya Shkola, Moscow (1976).Google Scholar
  8. 8.
    A. F. Kregers and M. R. Kilevits, “A study of stress relaxation in physically nonlinear polymeric materials during stretching,” Mech. Comp. Mater., 12, No. 6, 963–966 (1976).Google Scholar
  9. 9.
    A. F. Kregers, U. K. Vilks, and M. Ya. Leitane, “Forward and reverse creep of a physically nonlinear polymer material,” Mech. Comp. Mater., 9, No. 5, 696–703 (1973).Google Scholar
  10. 10.
    R. M. Christensen, Theory of Viscoelasticity: An Introduction, Academic Press, New York (1971).Google Scholar
  11. 11.
    R. D. Maksimov and E. Plume, “Long-term creep of hybrid aramid/glass-fiber-reinforced plastics,” Mech. Comp. Mater., 37, No. 4, 271–280 (2001).CrossRefGoogle Scholar
  12. 12.
    V. S. Namestnikov and A. A. Khvostunov, “Creep of duralumin under constant and variable loads,” Prikl. Mekh. Tekhn. Fiz., No. 4, 90–95 (1960).Google Scholar
  13. 13.
    P. M. Ogibalov and I. M. Tyuneva, “Short-term creep and elastic aftereffect of EDF glassfiber-reinforced plastic,” Vestn. Mosk. Univ., Ser. Mat. Mekh., No. 1, 119–134 (1966).Google Scholar
  14. 14.
    P. M. Ogibalov and I. M. Tyuneva, “Short-term creep of cloth-based laminate at room temperature,” Vestn. Mosk. Univ., Ser. Mat. Mekh., No. 6, 70–77 (1962).Google Scholar
  15. 15.
    Y. N. Rabotnov, Elements of Hereditary Solid Mechanics, Mir, Moscow (1980).MATHGoogle Scholar
  16. 16.
    Yu. N. Rabotnov, A. Kh. Papernik, and E. I. Stepanychev, “Nonlinear creep of TS8/3-250 glass-reinforced plastic,” Mech. Comp. Mater., 7, No. 3, 351–356 (1971).Google Scholar
  17. 17.
    A. R. Rzhanitsyn, Some Problems in the Mechanics of Systems Subject to Time-Dependent Deformation [in Russian], Gostekhizdat, Moscow (1949).Google Scholar
  18. 18.
    Yu. P. Samarin and O. V. Sorokin, “Creep in plasticized polyvinyl chloride under variable loading,” Dokl. AN SSSR, 195, No. 2, 333–336 (1970).Google Scholar
  19. 19.
    Yu. V. Suvorova, “Nonlinear effects during the deformation of hereditary media,” Mech. Comp. Mater., 13, No. 6, 814–818 (1977).Google Scholar
  20. 20.
    A. Evan, ”Creep and relaxation of oxygen-free cooper,” J. Appl. Mech., Trans. ASME, 10, No. 2, A101–A104 (1943).Google Scholar
  21. 21.
    N. Findley, “Prediction of stress relaxation from creep tests of plastics,” Proc. ASTM, 58, 521–526 (1958).Google Scholar
  22. 22.
    V. P. Golub, P. V. Fernati, and Ya. G. Lyashenko, “Determining the parameters of the fractional exponential heredity kernels of linear viscoelastic materials,” Int. Appl. Mech., 40, No. 9, 963–974 (2008).CrossRefGoogle Scholar
  23. 23.
    V. P. Golub, Ya. V. Pavluk, and P. V. Fernati, “Calculating creep strains in linear viscoelastic materials under nonstationary uniaxial loading,” Int. Appl. Mech., 45, No. 10, 1071–1083 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    V. P. Golub, A. V. Romanov, and N. V. Romanova, “Nonlinear creep and ductile creep rupture of perfectly elastoplastic rods under tension,” Int. Appl. Mech., 44, No. 4, 459–470 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    A. N. Guz, “Mechanics of crack propagation in materials with initial (residual) stresses (review),” Int. Appl. Mech., 47, No. 2, 121–168 (2011).MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    J. Marin, A. C. Webber, and G. F. Weissmann, “Creep-time relations for nylon in tension, compression, bending, and torsion,” Proc. ASTM, 54, 1313–1343 (1954).Google Scholar
  27. 27.
    J. Marin and P. Yoh-Han, “Relations for plexiglas subjected to various stresses,” Trans. ASME, 74, No. 7, 1231–1240 (1952).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • V. P. Golub
    • 1
  • Yu. M. Kobzar’
    • 1
  • V. S. Ragulina
    • 1
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations