Advertisement

International Applied Mechanics

, Volume 44, Issue 1, pp 110–119 | Cite as

On investigation of particle dispersion by a POD approach

  • C. Allery
  • C. Beghein
  • A. Hamdouni
Article

Abstract

The aim of this communication is to show the ability of POD to compute the instantaneous flow velocity when applying the Lagrangian technique to predict particle dispersion. The instantaneous flow velocity at the particle's location is obtained by solving a low-order dynamical model, deduced by a Galerkin projection of the Navier-Stokes equations onto each POD eigenfunction and it is coupled with the particle's equation of motion. This technique is applied to particle dispersion in a three-dimensional lid driven cavity. It yields a substantial decrease in computing time in comparison with LES computation and it enables treating different cases of particle dispersion

Keywords

reduced order models proper orthogonal decomposition particle dispersion computational fluid dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Allery, Contribution à l'identification des bifurcations et à l'étude des écoulements fluides par des systèmes dynamiques d'ordre faible (P.O.D.), Ph. D. Thesis, University of Poitiers, France (2002).Google Scholar
  2. 2.
    C. Allery, S. Guérin, A. Hamdouni, and A. Sakout, “Experimental and numerical POD study of the Coanda effect used to reduce self-sustained tones,” Mechanics Research Communication, 31, No. 1, 105–120 (2004).zbMATHCrossRefGoogle Scholar
  3. 3.
    V. Armenio and V. Fiorotto, “The importance of the forces acting on particles in turbulent flows,” Physics of Fluids, 13, No. 8, 2437–2440 (2001).CrossRefADSGoogle Scholar
  4. 4.
    V. Armenio, U. Piomelli, and V. Fiorotto, “Effect of the subgrid scales on particle motion,” Physics of Fluids, 11, No. 10, 3030–3042 (1999).CrossRefADSGoogle Scholar
  5. 5.
    N. Aubry, P. Holmes, J. L. Lumley, and E. Stone, “The dynamics of coherent structures in the wall region of a turbulent boundary layer,” J. Fluid Mech., 192, 115–173 (1988).zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    G. Berkooz, P. Holmes, and J. L. Lumley, “The proper orthogonal decomposition in the analysis of turbulent flows,” Ann. Rev. Fluid Mech., 25, 539–575 (1993).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    M. Chen and J. B. McLaughlin, “A new correlation for the aerosol deposition rate in vertical ducts,” J. Colloid Interf. Sci., 169, 437–455 (1995).CrossRefGoogle Scholar
  8. 8.
    P. Desjonquères, A. Berlemont, and G. Gouesbet, “A Lagrangian approach for the prediction of particle dispersion in turbulent flows,” J. Aerosol Sci., 19, No. 1, 99–103 (1988).CrossRefGoogle Scholar
  9. 9.
    A. D. Gosman and E. Ioannides, “Aspects of computer simulation of liquid-fuelled combustors,” in: Paper 81-0323 presented at the AIAA 19, Aerospace Science Mtg., St Louis, MO.Google Scholar
  10. 10.
    H. Gunes, “Low dimensional modeling of non-isothermal twin-jet flow,” Int. Communications in Heat and Mass Transfer, 29, No. 1, 77–86 (2002).CrossRefGoogle Scholar
  11. 11.
    W. C. Hinds, Aerosol Technology: Properties, Behaviour, and Measurement of Airborne Particles, John Wiley and Sons, New York (1982).Google Scholar
  12. 12.
    I. A. Joia, T. Ushijima, and R. J. Perkins, “Numerical study of bubble and particle motion in a turbulent boundary layer using proper orthogonal decomposition,” Appl. Sci. Research, 57, 263–277 (1997).zbMATHCrossRefADSGoogle Scholar
  13. 13.
    J. L. Lumley, “The structure of inhomegeneous turbulent flows,” in: Yaglom and Tararsky (eds.), Atmospheric Turbulence and Radio Wave Propagation (1967), pp. 166–178.Google Scholar
  14. 14.
    D. Rempfer, “Investigations of boundary layer transition via Galerkin projections on empirical eigenfunctions,” Physics of Fluids, 8, No. 1, 175–188 (1996).zbMATHCrossRefADSGoogle Scholar
  15. 15.
    L. Sirovich, “Turbulence and the dynamics of coherent structures, Part 1: Coherent structures. Part 2: Symmetries and transformations. Part 3: Dynamics and scaling,” Quarterly of Applied Mathematics, 45, 561–590 (1987).zbMATHADSMathSciNetGoogle Scholar
  16. 16.
    M. Sommerfeld, G. Kohnen, and M. Rüger, “Some open questions and inconsistencies of Lagrangian particle dispersion models,” Paper 15.1 presented at the 9th Symp. on Turbulent Shear Flows, Kyoto, August (1993).Google Scholar
  17. 17.
    D. G. Thakurta, M. Chen, J. B. McLaughlin, and K. Kontomaris, “Thermophoretic deposition of small particles in a direct numerical simmulation of turbulent channel flow,” Int. J. Heat and Mass Transfer, 41, 4167–4182 (1998).zbMATHCrossRefGoogle Scholar
  18. 18.
    L. Ukeiley, L. Cordier, R. Manceau, J. Delville, M. Glauser, and J. P. Bonnet, “Examination of large-scale structures in a turbulent plane mixing layer. Part 2. Dynamical systems model,” J. Fluid Mech., 441, 67–108 (2001).zbMATHCrossRefADSGoogle Scholar
  19. 19.
    Q. Wang and K. D. Squires, “Large eddy simulation of particle deposition in a vertical turbulent channel flow,” Int. J. Multiphase Flow, 22, No. 4, 667–683 (1996).zbMATHCrossRefGoogle Scholar
  20. 20.
    F. Yeh and U. Lei, “On the motion of small particles in a homogeneous isotropic turbulent flow,” Physics of Fluids, 3, No. 11, 2571–2586 (1991).zbMATHCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • C. Allery
    • 1
  • C. Beghein
    • 1
  • A. Hamdouni
    • 1
  1. 1.LEPTABUniversité de La RochelleLa Rochelle Cedex 1France

Personalised recommendations