International Applied Mechanics

, Volume 43, Issue 12, pp 1396–1405 | Cite as

Analyzing methods to allow for the damage of material in thermoviscoelastoplastic deformation

  • Yu. I. Lelyukh


Three methods to allow for damage of isotropic materials are discussed. The relations of the theory of deformation along paths of small curvature are used as equations of state. Rabotnov’s scalar equation is used to study the damage of a material during thermoviscoelastoplastic deformation. The stress determined by a stress rupture criterion that accounts for the stress mode is taken as an equivalent stress. An algorithm based on the finite-element method is developed to solve three-dimensional problems of thermoviscoelastoplasticity with allowance for material damage. The numerical results obtained are compared with experimental data


thermoviscoelastoplasticity damage finite-element method three-dimensional problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Bazhenov, O. I. Gulyar, O. S. Maiboroda, and S. O. Piskunov, “Solving problems of thermoviscoelasticity with allowance for creep damage,” Opir Mater. Teor. Sporud, 64, 16–31 (1998).Google Scholar
  2. 2.
    J. T. Boyle and J. Spence, Stress Analysis for Creep, Butterworth, London (1983).Google Scholar
  3. 3.
    A. Z. Galishin, “Procedure of determining creep and creep-rupture strength parameters for isotropic materials under nonisothermal loading,” Strength of Materials, 36, No. 4, 345–352 (2004).CrossRefGoogle Scholar
  4. 4.
    V. P. Golub, “The nonlinear mechanics of continual damage and its application to problems of creep and fatigue,” Int. Appl. Mech., 36, No. 3, 303–342 (2000).CrossRefGoogle Scholar
  5. 5.
    V. P. Golub, “Problems of predicting delayed fracture under creep conditions,” Int. Appl. Mech., 34, No. 10, 948–956 (1998).CrossRefGoogle Scholar
  6. 6.
    A. I. Gulyar, E. E. Maiboroda, and S. O. Piskunov, “Mathematical simulation of damage accumulation in inhomogeneous open bodies of revolution under creep,” Sopr. Mater. Teor. Sooruzh., 63, 123–131 (1997).Google Scholar
  7. 7.
    O. C. Zienkiewicz and K. Morgan, Finite Elements and Approximation, John Wiley & Sons, New York (1983).zbMATHGoogle Scholar
  8. 8.
    S. Yu. Eremenko, Finite-Element Methods in Solid Mechanics [in Russian], Osnova, Kharkov (1991).Google Scholar
  9. 9.
    L. M. Kachanov, Fundamentals of Fracture Mechanics [in Russian], Nauka, Moscow (1974).Google Scholar
  10. 10.
    L. M. Kachanov, Creep Theory [in Russian], Fizmatgiz, Moscow (1960).Google Scholar
  11. 11.
    S. N. Kats, “Studying the stress rupture of carbon pipes,” Teploénergetika, No. 11, 37–40 (1955).Google Scholar
  12. 12.
    N. N. Malinin, Applied Theory of Plasticity and Creep [in Russian], Mashinostroenie, Moscow (1975).Google Scholar
  13. 13.
    Yu. N. Rabotnov, “Creep-rupture mechanism,” in: Problems of Strength of Materials and Structures [in Russian], Izd. AN SSSR, Moscow (1959), pp. 5–7.Google Scholar
  14. 14.
    Yu. N. Rabotnov, “On failure under creep,” Zh. Prikl. Mekh. Tekhn. Fiz., No. 2, 160–163 (1962).Google Scholar
  15. 15.
    Yu. N. Rabotnov, Creep of Structural Members [in Russian], Nauka, Moscow (1966).Google Scholar
  16. 16.
    N. I. Bezukhov, V. L. Bazhanov, I. I. Gol’denblat, et al., High-Temperature Strength, Stability, and Vibration Analyses [in Russian], Mashinostroenie, Moscow (1965).Google Scholar
  17. 17.
    V. P. Sdobyrev, “Stress-rupture criterion for some creep resistant alloys under combined stress,” Izv. AN SSSR, Otd. Tekhn. Nauk, Mekh. Mashinostr., No. 6, 93–99 (1959).Google Scholar
  18. 18.
    I. I. Trunin, “Failure criterion for a combind stress state,” Prikl. Mekh., 1, No. 7, 77–83 (1965).Google Scholar
  19. 19.
    Yu. N. Shevchenko, Numerical Methods to Solve Applied Problems, Vol. 6 of the six-volume series Three-Dimensional Problems in Elasticity and Plasticity [in Russian], Naukova Dumka, Kyiv (1986).Google Scholar
  20. 20.
    Yu. N. Shevchenko, M. E. Babeshko, and R. G. Terekhov, Thermoviscoelastoplastic Processes in Combined Deformation of Structural Members [in Russian], Naukova Dumka, Kyiv (1992).Google Scholar
  21. 21.
    Yu. N. Shevchenko and V. N. Mazur, “Solution of plane and axisymmetric boundary-value problems of thermoviscoplasticity with allowance for creep damage to the material,” Int. Appl. Mech., 22, No. 8, 695–704 (1986).zbMATHGoogle Scholar
  22. 22.
    Yu. N. Shevchenko and V. G. Savchenko, Thermoviscoplasticity, Vol. 2 of the five-volume series Mechanics of Coupled Fields in Structural Members [in Russian], Naukova Dumka, Kyiv (1987).Google Scholar
  23. 23.
    Yu. N. Shevchenko, R. G. Terekhov, N. S. Braikovskaya, and S. M. Zakharov, “Failure processes of a body element as a result of creep-induced material damage,” Int. Appl. Mech., 31, No. 4, 264–271 (1994).CrossRefGoogle Scholar
  24. 24.
    V. I. Dranovsky, V. N. Mazur, G. V. Tarasov, and Yu. N. Shevchenko, “Effective methods of strength and longevity calculation of thermostressed elements of space-rocket engineering modern constructions,” in: Proc. of 2nd Int. Aerospace Conference ALA’98 (September 9–11), Ankara (1998), pp. 453–460.Google Scholar
  25. 25.
    A. Z. Galishin, “Determining the thermovisoplastic state of shells of revolution subject to creep damage,” Int. Appl. Mech., 40, No. 5, 537–545 (2004).CrossRefGoogle Scholar
  26. 26.
    V. P. Golub, V. I. Krizhanovskii, A. D. Pogrebnyak, and E. S. Kochetkova, “Fatigue strength of metallic and composite materials under repeated tension-compression,” Int. Appl. Mech., 42, No. 1, 40–50 (2006).CrossRefGoogle Scholar
  27. 27.
    V. P. Golub, A. D. Pogrebnyak, and E. S. Kochetkova, “Fatigue strength of metallic and composite materials under repeated high-cycle bending,” Int. Appl. Mech., 42, No. 5, 516–524 (2006).CrossRefGoogle Scholar
  28. 28.
    Yu. I. Lelyukh and Yu. N. Shevchenko, “On finite-element solution of spatial thermoviscoelastoplastic problems,” Int. Appl. Mech., 42, No. 5, 507–515 (2006).CrossRefGoogle Scholar
  29. 29.
    J. Lemaitre, A Course on Damage Mechanics, Springer-Verlag, Berlin (1996).zbMATHGoogle Scholar
  30. 30.
    J. Lemaitre, “Coupled elasto-plasticity and damage constitutive equations,” Comp. Meth. Appl. Mech. Eng., No. 51, 31–49 (1985).Google Scholar
  31. 31.
    V. G. Savchenko, “Stress state of compound solids of revolution made of damaged orthotropic materials with different tensile and compressive moduli,” Int. Appl. Mech., 42, No. 11, 1246–1255 (2006).CrossRefGoogle Scholar
  32. 32.
    Yu. N. Shevchenko, R. G. Terekhov, and N. N. Tormakhov, “Constitutive equations for describing the elastoplastic deformation of elements of a body along small-curvature paths in view of the stress mode,” Int. Appl. Mech., 42, No. 4, 421–430 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Yu. I. Lelyukh
    • 1
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations