International Applied Mechanics

, Volume 43, Issue 3, pp 303–308 | Cite as

Vibrations of a piezoceramic cylinder subject to nonstationary electric excitation

  • L. O. Grigor’eva
Article

Abstract

The paper proposes a method to solve the problem of vibrations of a radially polarized piezoelectric cylinder subject to nonstationary electric excitation. The dynamic electromechanical state of the cylinder is analyzed. The time-dependences of electric and mechanical characteristics are plotted. The distribution of these characteristics over the cross section of a short cylinder is examined. The region of end disturbances in a long cylinder is identified

Keywords

piezoelectric hollow cylinder nonstationary vibrations numerical solution electric excitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. É. Babaev, Nonstationary Waves in Continua with a System of Reflecting Surfaces [in Russian], Naukova Dumka, Kyiv (1990).Google Scholar
  2. 2.
    L. O. Grigor’eva and V. M. Shul’ga, “Numerical analysis of the deformation of a piezoceramic cylinder subject to axisymmetric dynamic loading,” Teor. Prikl. Mekh., 42, 171–176 (2006).Google Scholar
  3. 3.
    Yu. N. Kuliev and Kh. A. Rakhmatulin, “Longitudinal impact upon a piezoceramic rod,” Izv. AN SSSR, Mekh. Tverd. Tela, No. 5, 117–122 (1972).Google Scholar
  4. 4.
    O. Yu. Zharii and A. F. Ulitko, An Introduction to the Mechanics of Nonstationary Vibrations and Waves [in Russian], Vyshcha Shkola, Kyiv (1989).Google Scholar
  5. 5.
    V. N. Mel’nik and M. N. Moskal’kov, “Difference schemes and analysis of approximate solutions to two-dimensional nonstationary problems of coupled electroelasticity,” Dif. Uravn., 27, No. 7, 1220–1229 (1991).Google Scholar
  6. 6.
    V. T. Grinchenko, A. F. Ulitko, and N. A. Shul’ga, Electroelasticity, Vol. 5 of the five-volume series Mechanics of Coupled Fields in Structural Members [in Russian], Naukova Dumka, Kyiv (1989).Google Scholar
  7. 7.
    A. A. Samarskii and A. V. Gulin, Numerical Methods [in Russian], Nauka, Moscow (1989).MATHGoogle Scholar
  8. 8.
    V. G. Cheban and G. A. Fornya, “Numerical analysis of the electroelastic problem for rectangular bodies,” in: Numerical Methods to Solve Problems in Wave Dynamics [in Russian], Issue 117, Shtiintsa, Kishinev (1990), pp. 122–131.Google Scholar
  9. 9.
    V. M. Sharapov, I. G. Minaev, Yu. Yu. Bondarenko, et al., Piezoelectric Transducers [in Russian], ChGTU, Cherkassy (2004).Google Scholar
  10. 10.
    N. A. Shul’ga and A. M. Bolkisev, Vibrations of Piezoelectric Bodies [in Russian], Naukova Dumka, Kyiv (1990).Google Scholar
  11. 11.
    A. É. Babaev and A. A. Babaev, “Generation of nonstationary waves by a thick-walled piezoceramic cylinder excited by electric signals,” Int. Appl. Mech., 41, No. 11, 1316–1323 (2005).CrossRefGoogle Scholar
  12. 12.
    H. J. Ding, H. M. Wang, and P. F. Hou, “The transient responses of piezoelectric hollow cylinders for axysimmetrical plane stress problems,” Int. J. Solids Struct., 40, 105–123 (2003).MATHCrossRefGoogle Scholar
  13. 13.
    L. O. Grigor’eva, “Numerical solution to the initial-boundary-value problem of electroelasticity for a radially polarized hollow piezoceramic cylinder,” Int. Appl. Mech., 42, No. 12, 1371–1379 (2006).CrossRefGoogle Scholar
  14. 14.
    I. Yu. Khoma, “Thermopiezoelectric equations for nonthin ceramic shells,” Int. Appl. Mech., 41, No. 2, 118–128 (2005).CrossRefGoogle Scholar
  15. 15.
    L. P. Khoroshun, “General dynamic equations of electromagnetomechanics for dielectrics and piezoelectrics,” Int. Appl. Mech., 42, No. 4, 407–420 (2006).CrossRefGoogle Scholar
  16. 16.
    I. K. Senchenkov and N. F. Andrushko, “Thermomechanical coupling effects in a materially nonlinear disk under impulsive radial loading,” Int. Appl. Mech., 42, No. 8, 951–958 (2006).CrossRefGoogle Scholar
  17. 17.
    V. M. Shul’ga, “Nonaxisymmetric electroelastic vibrations of a hollow cylinder with radial axes of physicomechanical symmetry,” Int. Appl. Mech., 41, No. 7, 766–769 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • L. O. Grigor’eva
    • 1
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyiv

Personalised recommendations