International Applied Mechanics

, Volume 43, Issue 3, pp 247–271 | Cite as

Establishing fundamentals of the mechanics of nanocomposites

  • A. N. Guz
  • J. J. Rushchitsky
  • I. A. Guz
Article

Abstract

The paper proposes a basic approach to study the mechanical properties of nanocomposite materials with polymer matrix and the deformation of nanocomposites and structural members made of them. The notions of homogenization and continualization are discussed with reference to nanocomposite materials. Four main tasks for nanocomposite mechanics are defined: (i) description of the properties of nanoformations, (ii) description of the properties of the matrix (binder), (iii) description of phenomena at the matrix-nanoformations interfaces, and (iv) determination of the effective properties of nanocomposites to change over to the mechanics of structural members. Particular attention is given to the interface conditions between the matrix and reinforcement. The role of lower and upper bound estimates is pointed out. The basic models of linear or nonlinear micro-and nanocomposites are considered. These models are used in a numerical analysis. The analysis makes it possible to observe and describe the peculiarities of the processes of fracture, deformation, and wave propagation in nanocomposite materials with polymer matrix. The numerical results are presented in the form of plots

Keywords

basic approaches in the mechanics of nanomaterials relationship between models of micro-and nanomechanics fiber-reinforced polymer-matrix composites continuum models mechanical properties plane wave propagation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Born and K. Huang, Dynamic Theory of Crystal Lattices, Oxford University Press, Oxford (1954).Google Scholar
  2. 2.
    G. A. Van Fo Fy, Theory of Reinforced Materials [in Russian], Naukova Dumka, Kyiv (1971).Google Scholar
  3. 3.
    G. A. Vanin, Micromechanics of Composite Materials [in Russian], Naukova Dumka, Kyiv (1985).Google Scholar
  4. 4.
    A. N. Guz, Stability of Elastic Bodies under Finite Strains [in Russian], Naukova Dumka, Kyiv (1973).Google Scholar
  5. 5.
    A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies [in Russian], Vyshcha Shkola, Kyiv (1986).Google Scholar
  6. 6.
    A. N. Guz, Mechanics of Compressive Failure of Composite Materials [in Russian], Naukova Dumka, Kyiv (1990).Google Scholar
  7. 7.
    A. N. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses [in Russian], A.S.K., Kyiv (2004).Google Scholar
  8. 8.
    I. A. Guz, “Estimation of critical loading parameters for composites with imperfect layer contact,” Int. Appl. Mech., 28, No. 5, 291–296 (1992).CrossRefMathSciNetGoogle Scholar
  9. 9.
    L. J. Broutman and R. H. Krock (eds.), Composite Materials, in 8 vols., Academic Press, New York (1974).Google Scholar
  10. 10.
    A. N. Guz (ed.), Mechanics of Composite Materials [in Russian], Naukova Dumka (Vols. 1–4), A.S.K. (Vols. 5–12), Kyiv (1993–2003).Google Scholar
  11. 11.
    H. S. Katz and J. V. Milewski (eds.), Handbook of Fillers and Reinforcements for Plastics, Van Nostrand Reinhold Company, New York (1978).Google Scholar
  12. 12.
    J. J. Rushchitsky, Elements of Mixture Theory [in Russian], Naukova Dumka, Kyiv (1991).Google Scholar
  13. 13.
    G. Lubin (ed.), Handbook of Composites, Van Nostrand Reinhold Company, New York (1982).Google Scholar
  14. 14.
    A. Bedford and G. S. Drumheller, “Theories of immiscible and structured mixtures,” Int. J. Eng. Sci., 21, 863–960 (1983).MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    V. A. Buryachenko, A. Roy, K. Lafdi, K. L. Anderson, and S. Chellapilla, “Multi-scale mechanics of nanocomposites including interface: Experimental and numerical investigation,” Composites Science and Technology, 65, 2435–2465 (2005).CrossRefGoogle Scholar
  16. 16.
    P. J. F. Harris (ed.), Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, Cambridge University Press, Cambridge (2000).Google Scholar
  17. 17.
    C. Cattani, J. J. Rushchitsky, and S. V. Sinchilo, “Physical constants for one type of nonlinearly elastic fibrous micro-and nanocomposites with hard and soft nonlinearities,” Int. Appl. Mech., 41, No. 12, 1368–1377 (2005).CrossRefGoogle Scholar
  18. 18.
    A. Kelly and C. Zweben (eds.), Comprehensive Composite Materials, in 6 vols., Pergamon Press, Amsterdam (2000).Google Scholar
  19. 19.
    I. Milne, R. O. Ritchie, and B. Karihaloo (eds.), Comprehensive Structural Integrity, in 10 vols., Elsevier, New York (2003).Google Scholar
  20. 20.
    M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (eds.), Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Springer-Verlag, Berlin (2001).Google Scholar
  21. 21.
    E. K. Drexler, Engines of Creation, the Coming Age of Nanotechnology, Fourth Estate, London (1990).Google Scholar
  22. 22.
    S. J. V. Frankland and V. M. Harik, Analysis of Carbon Nanotube Pull-out from a Polymer Matrix, NASA/CR-2002-211743, ICASE Report No. 2002-23 (2002).Google Scholar
  23. 23.
    S. J. V. Frankland, V. M. Harik, G. M. Odegard, D. W. Brenner, and T. S. Gates, The Stress-Strain Behavior of Polymer-Nanotube Composites from Molecular Dynamics Simulations, NASA/CR-2002-211953, ICASE Report No. 2002-41 (2002).Google Scholar
  24. 24.
    A. N. Guz, “Three-dimensional theory of stability of a carbon nanotube in a matrix,” Int. Appl. Mech., 42, No. 1, 19–31 (2006).CrossRefMathSciNetGoogle Scholar
  25. 25.
    A. N. Guz, “On two-level model in the mesomechanics of compressive fracture of cracked composites,” Int. Appl. Mech., 39, No. 3, 274–285 (2003).CrossRefGoogle Scholar
  26. 26.
    A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies, Springer Verlag, Berlin (1999).MATHGoogle Scholar
  27. 27.
    A. N. Guz, A. A. Rodger, and I. A. Guz, “Developing a compressive failure theory for nanocomposites,” Int. Appl. Mech., 41, No. 3, 233–255 (2005).CrossRefGoogle Scholar
  28. 28.
    A. N. Guz and J. J. Rushchitsky, “Nanomaterials: On the mechanics of nanomaterials,” Int. Appl. Mech., 39, No. 11, 1271–1293 (2003).CrossRefGoogle Scholar
  29. 29.
    I. A. Guz and J. J. Rushchitsky, “Comparing the evolution characteristics of waves in nonlinearly elastic micro-and nanocomposites with carbon fillers,” Int. Appl. Mech., 40, No. 7, 785–793 (2004).CrossRefGoogle Scholar
  30. 30.
    I. A. Guz and J. J. Rushchitsky, “Comparison of mechanical properties and effects in micro and nanocomposites with carbon fillers (carbon microfibers, graphite microwhiskers and carbon nanotubes),” Mech. Comp. Mater., 40, No. 3, 179–190 (2004).CrossRefGoogle Scholar
  31. 31.
    I. A. Guz and J. J. Rushchitsky, “Theoretical description of a delamination mechanism in fibrous micro-and nanocomposites,” Int. Appl. Mech., 40, No. 10, 1129–1136 (2004).Google Scholar
  32. 32.
    A. Kelly, “Composites in context,” Composites Science and Technology, 23, 171–199 (1985).CrossRefGoogle Scholar
  33. 33.
    K. T. Lau and D. Hui, “The revolutionary creating of new advanced carbon nanotube composite,” Composites. Part B: Engineering, 33, 263–277 (2002).CrossRefGoogle Scholar
  34. 34.
    H. S. Nalwa, Handbook of Nanostructured Materials and Nanotechnology, Academic Press, San Diego (2000).Google Scholar
  35. 35.
    D. Qian, G. J. Wagner, W. K. Liu, M. F. Yu, and R. S. Ruoff, “Mechanics of carbon nanotubes,” Appl. Mech. Rev., 55, 495–530 (2002).CrossRefGoogle Scholar
  36. 36.
    J. J. Rushchitsky, “Interaction of waves in solid mixtures,” App. Mech. Rev., 52, No. 2, 35–74 (1999).CrossRefGoogle Scholar
  37. 37.
    J. J. Rushchitsky, “Quadratically nonlinear cylindrical hyperelastic waves: Derivation of wave equations for plane-strain state,” Int. Appl. Mech., 41, No. 5, 496–505 (2005).CrossRefGoogle Scholar
  38. 38.
    J. J. Rushchitsky, “Quadratically nonlinear cylindrical hyperelastic waves: Derivation of wave equations for axisymmetric and other states,” Int. Appl. Mech., 41, No. 6, 646–656 (2005).CrossRefGoogle Scholar
  39. 39.
    J. J. Rushchitsky, “Quadratically nonlinear cylindrical hyperelastic waves: Primary analysis of evolution,” Int. Appl. Mech., 41, No. 7, 770–777 (2005).CrossRefGoogle Scholar
  40. 40.
    D. Srivastava, Ch. Wei, and K. Chao, “Nanomechanics of carbon nanotubes and composites,” Appl. Mech. Rev., 56, 215–229 (2003).CrossRefGoogle Scholar
  41. 41.
    E. T. Thostenson, L. Chunyu, and T. W. Chou, “Nano-composites in context. (Review),” Composites Science and Technology, 65, 491–516 (2005).CrossRefGoogle Scholar
  42. 42.
    R. A. Vaia and H. D. Wagner, “Framework for nanocomposites,” Materials Today, 4, No. 10, 32–37 (2004).CrossRefGoogle Scholar
  43. 43.
    H. D. Wagner and R. A. Vaia, “Nanocomposites: issues the interface,” Materials Today, 4, No. 10, 38–42 (2004).CrossRefGoogle Scholar
  44. 44.
    N. Wilson, K. Kannangara, G. Smith, M. Simmons, and B. Raguse, Nanotechnology. Basic Science and Emerging Technologies, Chapman & Hall/CRC, Boca Raton-London (2002).Google Scholar
  45. 45.
    J. R. Xiao, B. A. Gama, and J. W. Gillespie, Jr., “An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes,” Int. J. Solids Struct., 42, 3075–3092 (2005).CrossRefMATHGoogle Scholar
  46. 46.
    B. I. Yakobson and P. Avouris, “Mechanical properties of carbon nanotubes,” in: M. S. Dresselhaus, G. Dresselhaus, and P. Avouris (eds.), Topics in Advanced Physics, Vol. 80, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Springer-Verlag, Berlin (2001), pp. 287–329.Google Scholar
  47. 47.
    P. Zhang, H. Jiang, Y. Huang, P. H. Geubelle, and K. C. Hwang, “An atomistic-based continuum theory for carbon nanotubes: Analysis of fracture nucleation,” J. Mech. Phys. Solids, 52, 977–998 (2004).MATHCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • A. N. Guz
    • 1
  • J. J. Rushchitsky
    • 1
  • I. A. Guz
    • 2
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyiv
  2. 2.University of AberdeenScotland

Personalised recommendations