International Applied Mechanics

, Volume 42, Issue 8, pp 895–903

Nonlinear plane waves in Signorini’s hyperelastic material

  • C. Cattani
  • J. J. Rushchitsky
Article

Abstract

This paper presents a rigorous procedure, based on the concepts of nonlinear continuum mechanics, to derive nonlinear wave equations that describe the propagation and interaction of plane hyperelastic waves. The nonlinearity is introduced by the Signorini potential and represents the quadratic nonlinearity of all governing relations with respect to displacements. A configuration (state) of the elastic medium dependent on the abscissa is analyzed. Analytic transformations are used to go over from the Eulerian to the Lagrangian description of nonlinear deformation and from the invariants of the Almansi finite-strain tensor to the invariants of the Cauchy-Green finite-strain tensor. Nonlinear wave equations describing the propagation of plane longitudinal and transverse waves in Signorini’s materials are derived, and the strain and true-stress tensors are analytically expressed in terms of the deformation gradient. These wave equations are compared with those based on the Murnaghan model. Their similarities and differences are indicated. It is shown that the new Signorini constant can be identified from the Lamé and Murnaghan constants

Keywords

plane wave Signorini’s hyperelastic model quadratically nonlinear wave equations Signorini constant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses [in Russian], A.S.K., Kyiv (2004).Google Scholar
  2. 2.
    A. N. Guz, Elastic Waves in Prestressed Bodies [in Russian], Vol. 1, Naukova Dumka, Kyiv (1987).Google Scholar
  3. 3.
    L. K. Zarembo and V. A. Krasil’nikov, An Introduction to Nonlinear Acoustics [in Russian], Nauka, Moscow (1966).Google Scholar
  4. 4.
    V. V. Krylov and V. A. Krasil’nikov, An Introduction to Physical Acoustics [in Russian], Nauka, Moscow (1986).Google Scholar
  5. 5.
    A. I. Lurie, Theory of Elasticity, Springer, Berlin (1999).Google Scholar
  6. 6.
    A. I. Lurie, Nonlinear Theory of Elasticity, North-Holland, Amsterdam (1990).MATHGoogle Scholar
  7. 7.
    J. J. Rushchitsky and S. I. Tsurpal, Waves in Microstructural Materials [in Ukrainian], Inst. Mekh. im. S. P. Tymoshenka, Kyiv (1998).Google Scholar
  8. 8.
    L. I. Sedov, Mechanics of Continuous Media, World Scientific, Singapore (1997).MATHGoogle Scholar
  9. 9.
    C. Cattani and J. J. Rushchitsky, “Cubically nonlinear elastic waves: Wave equations and methods of analysis,” Int. Appl. Mech., 39, No. 10, 1115–1145 (2003).CrossRefMathSciNetGoogle Scholar
  10. 10.
    C. Cattani and J. J. Rushchitsky, “Cubically nonlinear versus quadratically nonlinear elastic waves: Main wave effects,” Int. Appl. Mech., 39, No. 12, 1361–1399 (2003).CrossRefMathSciNetGoogle Scholar
  11. 11.
    C. Cattani and J. J. Rushchitsky, “Nonlinear cylindrical waves in Signorini’s hyperelastic material,” Int. Appl. Mech., 42, No. 7, 1361–1399 (2006).CrossRefMathSciNetGoogle Scholar
  12. 12.
    A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies, Springer Verlag, Berlin (1999).MATHGoogle Scholar
  13. 13.
    J. J. Rushchitsky, “Interaction of waves in solid mixtures,” Appl. Mech. Rev., 52, No. 2, 35–74 (1999).CrossRefGoogle Scholar
  14. 14.
    J. J. Rushchitsky, “Extension of the microstructural theory of two-phase mixtures to composite materials,” Int. Appl. Mech., 36, No. 5, 586–614 (2000).Google Scholar
  15. 15.
    J. J. Rushchitsky, “Quadratically nonlinear cylindrical hyperelastic waves: Derivation of wave equations for plane-strain state,” Int. Appl. Mech., 41, No. 5, 496–505 (2005).CrossRefGoogle Scholar
  16. 16.
    J. J. Rushchitsky, “Quadratically nonlinear cylindrical hyperelastic waves: Derivation of wave equations for axisymmetric and other states,” Int. Appl. Mech., 41, No. 6, 646–656 (2005).CrossRefGoogle Scholar
  17. 17.
    J. J. Rushchitsky, “Quadratically nonlinear cylindrical hyperelastic waves: Primary analysis of evolution,” Int. Appl. Mech., 41, No. 7, 770–777 (2005).CrossRefGoogle Scholar
  18. 18.
    C. Cattani, J. J. Rushchitsky, and S. V. Sinchilo, “Physical constants for one type of nonlinearly elastic fibrous micro-and nanocomposites with hard and soft nonlinearities,” Int. Appl. Mech., 41, No. 12, 1368–1377 (2005).CrossRefGoogle Scholar
  19. 19.
    A. Signorini, “Transformazioni termoelastiche finite,” Annali di Matematica Pura ed Applicata, Serie IV, 22, 33–143 (1943).CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    A. Signorini, “Transformazioni termoelastiche finite,” Annali di Matematica Pura ed Applicata, Serie IV, 30, 1–72 (1949).CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    A. Signorini, “Transformazioni termoelastiche finite. Solidi Incomprimibili. A Mauro Picone nel suo 70ane compleano,” Ànnali di Matematica Pura ed Applicata, Serie IV, 39, 147–201 (1955).CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    A. Signorini, Questioni di elasticite non linearizzata, Edizioni Cremonese, Roma (1959).Google Scholar
  23. 23.
    A. Signorini, “Questioni di elasticite non linearizzata e semilinearizzata,” Rendiconti di Matematica, 18, No. 1–2, 95–139 (1959).MathSciNetMATHGoogle Scholar
  24. 24.
    A. Signorini, “Transformazioni termoelastiche finite. Solidi Vincolati. A Giovanni Sansone nel suo 70ane compleano,” Annali di Matematica Pura ed Applicata, Serie IV, 51, 320–372 (1960).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • C. Cattani
    • 1
  • J. J. Rushchitsky
    • 2
  1. 1.University of SalernoItaly
  2. 2.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyiv

Personalised recommendations