International Applied Mechanics

, Volume 42, Issue 7, pp 765–774

Nonlinear cylindrical waves in Signorini’s hyperelastic material

  • C. Cattani
  • J. J. Rushchitsky
Article

Abstract

This paper presents a rigorous procedure, based on the concepts of nonlinear continuum mechanics, to derive nonlinear wave equations that describe the propagation and interaction of hyperelastic cylindrical waves. Nonlinearity is introduced by the Signorini potential and represents the quadratic and cubic nonlinearities of all governing relations with respect to displacements. A configuration (state) of the elastic medium dependent on the coordinate r and independent of the coordinates ϑ and r is analyzed. Analytic transformations are used to go over from the Eulerian to the Lagrangian description of nonlinear deformation and from the invariants of the Almansi finite-strain tensor to the invariants of the Cauchy-Green finite-strain tensor. Possibly for the first time in the 60 years the Signorini model has been in existence, a nonlinear wave equation is derived for it and the strain and true-stress tensors are analytically expressed in terms of the deformation gradient. The quasilinear Signorini model and four cases of incorporating material and geometrical nonlinearities into the wave equation are discussed

Keywords

nonlinear continuum mechanics Signorini model axisymmetric configuration quadratically and cubically nonlinear wave equations geometrical and material nonlinearities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Guz, Stability of Elastic Bodies with Finite Strains [in Russian], Naukova Dumka, Kyiv (1973).Google Scholar
  2. 2.
    A. N. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses [in Russian], A.S.K., Kyiv (2004).Google Scholar
  3. 3.
    A. I. Lurie, Theory of Elasticity, Springer, Berlin (1999).Google Scholar
  4. 4.
    A. I. Lurie, Nonlinear Theory of Elasticity, North-Holland, Amsterdam (1990).MATHGoogle Scholar
  5. 5.
    J. J. Rushchitsky and Ya. V. Simchuk, “Quadratically nonlinear wave equation for cylindrical axisymmetric waves propagating in the radial direction,” Dop. NAN Ukrainy, No. 10, 45–52 (2005).Google Scholar
  6. 6.
    J. J. Rushchitsky and Ya. V. Simchuk, “Theoretical and numerical analysis of quadratically nonlinear, cylindrical, axisymmetric waves propagating in micro-and nanoscale composites,” Dop. NAN Ukrainy, No. 3, 54–62 (2006).Google Scholar
  7. 7.
    J. J. Rushchitsky and S. I. Tsurpal, Waves in Microstructural Materials [in Ukrainian], Inst. Mekh. S. P. Timoshenka, Kyiv (1998).Google Scholar
  8. 8.
    L. I. Sedov, Continuum Mechanics [in Russian], Vols. 1, 2, Nauka, Moscow (1970).MATHGoogle Scholar
  9. 9.
    C. Cattani and J. J. Rushchitsky, “Cubically nonlinear elastic waves: Wave equations and methods of analysis,” Int. Appl. Mech., 39, No. 10, 1115–1145 (2003).MathSciNetCrossRefGoogle Scholar
  10. 10.
    C. Cattani and J. J. Rushchitsky, “Cubically nonlinear versus quadratically nonlinear elastic waves: Main wave effects,” Int. Appl. Mech., 39, No. 12, 1361–1399 (2003).MathSciNetCrossRefGoogle Scholar
  11. 11.
    C. Cattani, J. J. Rushchitsky, and S. V. Sinchilo, “Physical constants for one type of nonlinearly elastic fibrous microand nanocomposites with hard and soft nonlinearities,” Int. Appl. Mech., 41, No. 12, 1368–1377 (2005).CrossRefGoogle Scholar
  12. 12.
    C. Cattani, J. Rushchitsky, and J. Symchuk, “To nonlinear modeling the cylindrical waves in fibrous nanocomposites,” in: Abstracts of 11th Int. Conf. on Dynamical Systems Modelling and Stability Investigation, Kyiv, May 21–23 (2005), p. 355.Google Scholar
  13. 13.
    C. Cattani, J. Rushchitsky, and J. Symchuk, “Evolution of the initial profile of hyperelastic cylindrical waves in fibrous nanocomposites,” in: Abstracts of Int. Workshop on Waves and Flows, Kyiv, August 23–25 (2005), p 7.Google Scholar
  14. 14.
    A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies, Springer Verlag, Berlin (1999).MATHGoogle Scholar
  15. 15.
    J. J. Rushchitsky, “Quadratically nonlinear cylindrical hyperelastic waves: Derivation of wave equations for plane-strain state,” Int. Appl. Mech., 41, No. 5, 496–505 (2005).CrossRefGoogle Scholar
  16. 16.
    J. J. Rushchitsky, “Quadratically nonlinear cylindrical hyperelastic waves: Derivation of wave equations for axisymmetric and other states,” Int. Appl. Mech., 41, No. 6, 646–656 (2005).CrossRefGoogle Scholar
  17. 17.
    J. J. Rushchitsky, “Quadratically nonlinear cylindrical hyperelastic waves: Primary analysis of evolution,” Int. Appl. Mech., 41, No. 7, 770–777 (2005).CrossRefGoogle Scholar
  18. 18.
    A. Signorini, “Transformazioni termoelastiche finite,” Annali di Matematica Pura ed Applicata, Serie IV, 22, 33–143 (1943).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    A. Signorini, “Transformazioni termoelastiche finite,” Annali di Matematica Pura ed Applicata, Serie IV, 30, 1–72 (1949).MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    A. Signorini, “Transformazioni termoelastiche finite. Solidi Incomprimibili. A Mauro Picone nel suo 70ane compleano,” Annali di Matematica Pura ed Applicata, Serie IV, 39, 147–201 (1955).MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    A. Signorini, “Questioni di Elasticite Nonlinearizzata,” Edizioni Cremonese, Roma (1959).Google Scholar
  22. 22.
    A. Signorini, “Questioni di elasticite nonlinearizzata e semilinearizzata,” Rendiconti di Matematica, 18, No. 1–2, 95–139 (1959).MathSciNetMATHGoogle Scholar
  23. 23.
    A. Signorini, “Transformazioni termoelastiche finite. Solidi Vincolati. A Giovanni Sansone nel suo 70ane compleano,” Annali di Matematica Pura ed Applicata, Serie IV, 51, 320–372 (1960).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • C. Cattani
    • 1
  • J. J. Rushchitsky
    • 2
  1. 1.University of SalernoItaly
  2. 2.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKyiv

Personalised recommendations