Advertisement

International Applied Mechanics

, Volume 42, Issue 5, pp 541–547 | Cite as

Natural vibration of a sandwich beam on an elastic foundation

  • V. D. Kubenko
  • Yu. M. Pleskachevskii
  • É. I. Starovoitov
  • D. V. Leonenko
Article

Abstract

The natural vibration of an elastic sandwich beam on an elastic foundation is studied. Bernoulli’s hypotheses are used to describe the kinematics of the face layers. The core layer is assumed to be stiff and compressible. The foundation reaction is described by Winkler’s model. The system of equilibrium equations is derived, and its exact solution for displacements is found. Numerical results are presented for a sandwich beam on an elastic foundation of low, medium, or high stiffness

Keywords

free vibration elastic sandwich beam Winkler foundation exact solution numerical analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Gorshkov, É. I. Starovoitov, and A. V. Yarovaya, “Harmonic vibrations of a viscoelastoplastic sandwich cylindrical shell,” Int. Appl. Mech., 37, No. 9, 1196–1203 (2001).zbMATHCrossRefGoogle Scholar
  2. 2.
    A. G. Gorshkov, É. I. Starovoitov, and A. V. Yarovaya, Mechanics of Laminated Viscoelastoplastic Members [in Russian], Fizmatlit, Moscow (2005).Google Scholar
  3. 3.
    V. D. Kubenko (ed.), Dynamics of Structural Members, Vol. 9 of the 12-volume series Mechanics of Composite Materials [in Russian], A.S.K., Kiev (1999).Google Scholar
  4. 4.
    P. Z. Lugovoi, “Dynamics of thin-walled structures under nonstationary loads,” Int. Appl. Mech., 37, No. 5, 602–627 (2001).zbMATHCrossRefGoogle Scholar
  5. 5.
    É. I. Starovoitov, D. V. Leonenko, and A. V. Yarovaya, “Circular sandwich plates under local impulsive loads,” Int. Appl. Mech., 39, No. 8, 945–952 (2003).CrossRefGoogle Scholar
  6. 6.
    É. I. Starovoitov, D. V. Leonenko, and A. V. Yarovaya, “Vibrations of circular sandwich plates under resonance loads,” Int. Appl. Mech., 39, No. 12, 1458–1463 (2003).CrossRefGoogle Scholar
  7. 7.
    E. I. Starovoitov, A. V. Yarovaya, and D. V. Leonenko, Local and Impulsive Loads on Sandwich Members [in Russian], BelGUT, Gomel (2003).Google Scholar
  8. 8.
    G. L. Goronin and Yu. V. Nemirovskii, “Transverse vibrations of laminated beams in three-dimensional formulation,” Int. Appl. Mech., 41, No. 6, 631–645 (2005).CrossRefGoogle Scholar
  9. 9.
    V. D. Kubenko and P. S. Koval’chuk, “Influence of initial geometric imperfections on the vibrations and dynamic stability of elastic shells,” Int. Appl. Mech., 40, No. 8, 847–877 (2004).zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    V. V. Levchenko, “Love waves in a layer on a regularly laminated half-space,” Int. Appl. Mech., 40, No. 9, 1050–1055 (2004).zbMATHCrossRefGoogle Scholar
  11. 11.
    É. I. Starovoitov, D. V. Leonenko, and A. V. Yarovaya, “Vibrations of a sandwich rod under local and impulsive forces,” Int. Appl. Mech., 41, No. 7, 809–816 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. D. Kubenko
    • 1
  • Yu. M. Pleskachevskii
    • 2
  • É. I. Starovoitov
    • 2
  • D. V. Leonenko
    • 2
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKiev
  2. 2.State Committee for Science and TechnologiesBelarus State University of TransportGomelBelarus

Personalised recommendations