International Applied Mechanics

, Volume 42, Issue 3, pp 308–317 | Cite as

Stress-strain analysis of conical shells with different boundary conditions and thickness varying in two directions at constant mass

  • Ya. M. Grigorenko
  • V. A. Tsybul’nik
Article

Abstract

A method developed for solving two-dimensional problems in the theory of conical shells is used to analyze the stress-strain state of shells with different boundary conditions and thickness varying in two directions at constant mass. Numerical results are given in the form of plots and tables

Keywords

conical shell varying thickness discrete Fourier series discrete-orthogonalization method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ya. M. Grigorenko, Isotropic and Anisotropic Laminated Shells of Revolution with Varying Stiffness [in Russian], Naukova Dumka, Kiev (1973).Google Scholar
  2. 2.
    Ya. M. Grigorenko and A. T. Vasilenko, Theory of Variable-Stiffness Shells, Vol. 4 of the five-volume series Methods of Shell Design [in Russian], Naukova Dumka, Kiev (1981).Google Scholar
  3. 3.
    Ya. M. Grigorenko, A. T. Vasilenko, I. G. Emel’yanov, et al., Statics of Structural Members, Vol. 8 of the 12-volume series Mechanics of Composite Materials [in Russian], A.S.K., Kiev (1999).Google Scholar
  4. 4.
    A. D. Kovalenko, Ya. M. Grigorenko, and L. A. Il’in, Theory of Thin Conical Shells and Its Application in Mechanical Engineering [in Russian], Izd. AN USSR, Kiev (1963).Google Scholar
  5. 5.
    G. M. Fikhtengol’ts, Differential and Integral Calculus [in Russian], Vol. 3, Fizmatgiz, Moscow (1966).Google Scholar
  6. 6.
    R. W. Hamming, Numerical Methods for Scientists and Engineers, McGraw-Hill, New York (1962).Google Scholar
  7. 7.
    Ya. M. Grigorenko and L. S. Rozhok, “Discrete Fourier-series method in problems of bending of variable-thickness rectangular plates,” J. Eng. Math., 46, 269–280 (2003).MATHCrossRefGoogle Scholar
  8. 8.
    Ya. M. Grigorenko and L. S. Rozhok, “Stress analysis of orthotropic hollow noncircular cylinders, ” Int. Appl. Mech., 40, No. 6, 679–685 (2004).MATHCrossRefGoogle Scholar
  9. 9.
    Ya. M. Grigorenko and L. S. Rozhok, “Influence of corrugation frequency and amplitude on the stress state of hollow elliptic cylinders,” Int. Appl. Mech., 40, No. 9, 1012–1017 (2004).MATHCrossRefGoogle Scholar
  10. 10.
    Ya. M. Grigorenko and L. S. Rozhok, “Stress solution for transversely isotropic corrugated hollow cylinders,” Int. Appl. Mech., 41, No. 3, 277–282 (2005).CrossRefGoogle Scholar
  11. 11.
    Ya. M. Grigorenko and V. A. Tsybul’nik, “Application of discrete Fourier series in the stress analysis of cylindrical shells of variable thickness with arbitrary end conditions,” Int. Appl. Mech., 41, No. 6, 657–665 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Ya. M. Grigorenko
    • 1
  • V. A. Tsybul’nik
    • 1
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKiev

Personalised recommendations