International Applied Mechanics

, Volume 41, Issue 12, pp 1418–1425 | Cite as

Control of a flexible manipulator within the framework of the Timoshenko beam model

  • A. L. Zuev


A study is made of a controllable mechanical system in the form of a Timoshenko beam with a weight. The system models a flexible-link robot manipulator. A Galerkin approximation based on the solutions of the corresponding Sturm-Liouville problem is constructed for the partial differential equations of motion. Conditions of local controllability of the Galerkin approximation in the neighborhood of the system’s equilibrium state are established. The stabilizability of the equilibrium state is proved, and an explicit scheme for feedback control design is proposed


controllable mechanical system Timoshenko beam flexible-link robot manipulator Galerkin approximation local controllability condition stabilizability of equilibrium state explicit scheme for feedback control design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Gulyaev and T. V. Zavrazhina, “Dynamics of a robot manipulator with elastic links,” Int. Appl. Mech., 37, No. 11, 1499–1508 (2001).CrossRefGoogle Scholar
  2. 2.
    A. M. Kovalev, A. L. Zuev, and V. F. Shcherbak, “Designing a stabilizing control for a rigid body with attached elastic elements,” Probl. Upravl. Inform., No. 6, 5–16 (2002).Google Scholar
  3. 3.
    S. P. Timoshenko, Vibrations in Engineering [in Russian], Fizmatgiz, Moscow (1959).Google Scholar
  4. 4.
    W. M. Wonham, Linear Multivariable Control: A Geometric Approach, Springer Verlag, Berlin (1979).Google Scholar
  5. 5.
    F. L. Chernous’ko, N. N. Bolotnik, and V. G. Gradetskii, Robot Manipulators [in Russian], Nauka, Moscow (1989).Google Scholar
  6. 6.
    M. J. Balas, “Modal control of certain flexible dynamical systems,” SIAM J. Control Optim., 16, 450–462 (1978).CrossRefADSzbMATHMathSciNetGoogle Scholar
  7. 7.
    J. Donea and F. Huerta, Finite Element Methods for Flow Problems, Wiley, Chichester (2003).Google Scholar
  8. 8.
    K. Grosh and P. M. Pinsky, “Design of Galerkin generalized least squares methods for Timoshenko beams,” Comp. Meth. Appl. Mech. Eng., 132, 1–16 (1996).CrossRefGoogle Scholar
  9. 9.
    V. I. Gulyaev, “Complex motion of elastic systems,” Int. Appl. Mech., 39, No. 5, 525–545 (2003).CrossRefzbMATHGoogle Scholar
  10. 10.
    V. I. Gulyaev and T. V. Zavrazhina, “The effect of the elastic compliance of actuator components on the dynamics of a robot,” Int. Appl. Mech., 39, No. 2, 242–249 (2003).CrossRefGoogle Scholar
  11. 11.
    P. D. Folkow, P. Olsson, and G. Kristensson, “Time domain Green functions for the homogeneous Timoshenko beam,” Quart. J. Mech. Appl. Math., 51(1), 125–142 (1998).MathSciNetGoogle Scholar
  12. 12.
    W. Krabs, “On moment theory and controllability of one-dimensional vibrating systems and heating processes,” in: Lecture Notes in Control and Information Sciences, 173, Springer-Verlag, Berlin (1992), pp. 42–46.Google Scholar
  13. 13.
    W. Krabs and G. M. Sklyar, “On the controllability of a slowly rotating Timoshenko beam,” J. Anal. Appl., 18, No. 2, 437–448 (1999).MathSciNetGoogle Scholar
  14. 14.
    W. Krabs and G. M. Sklyar, “On the stabilizability of a slowly rotating Timoshenko beam,” Z. Anal. Anwend., 19, No. 1, 131–145 (2000).MathSciNetGoogle Scholar
  15. 15.
    Z.-H. Luo, B.-Z. Guo, and O. Morgul, Stability and Stabilization of Infinite Dimensional Systems with Applications, Springer-Verlag, London (1999).Google Scholar
  16. 16.
    H. A. Talebi, R. V. Patel, and K. Khorasani, “Control of flexible-link manipulators using neural networks,” in: Lecture Notes in Control and Information Sciences, 261, Springer-Verlag, Berlin (2001).Google Scholar
  17. 17.
    S. W. Taylor, “A smoothing property of a hyperbolic system and boundary controllability,” J. Comp. Appl. Math., 114, 23–40 (2000).CrossRefzbMATHGoogle Scholar
  18. 18.
    S. W. Taylor and S. C. B. Yau, “Boundary control of a rotating Timoshenko beam,” Austral. New Zealand Industr. Appl. Math. J., 44(E), 143–184 (2003).Google Scholar
  19. 19.
    A. E. Zakrzhevskii, “Optimal slewing of a flexible spacecraft,” Int. Appl. Mech., 39, No. 10, 1208–1214 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. L. Zuev
    • 1
  1. 1.Institute of Applied Mathematics and MechanicsNational Academy of Sciences of UkraineDonetsk

Personalised recommendations