International Applied Mechanics

, Volume 41, Issue 9, pp 976–987 | Cite as

On a Discrete Fourier Series Solution to Static Problem for Conical Shells of Circumferentially Varying Thickness

  • Ya. M. Grigorenko
  • V. A. Tsybul'nik
Article

Abstract

An approach is developed to solve the two-dimensional boundary-value problems of the stress-strain state of conical shells with circumferentially varying thickness. The approach employs discrete Fourier series to separate variables and make the problem one-dimensional. The one-dimensional boundary-value problem is solved by the stable discrete-orthogonalization method. The results obtained are presented as plots and tables

Keywords

conical shells varying thickness discrete Fourier series discrete-orthogonalization method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    V. Z. Vlasov, General Theory of Shells and Its Application in Technology [in Russian], Gostekhizdat, Moscow-Leningrad (1949).Google Scholar
  2. 2.
    A. L. Gol'denveizer, Theory of Elastic Thin Shells [in Russian], Nauka, Moscow (1976).Google Scholar
  3. 3.
    Ya. M. Grigorenko, Isotropic and Anisotropic Laminated Shells of Revolution of Varying Stiffness [in Russian], Naukova Dumka, Kiev (1973).Google Scholar
  4. 4.
    Ya. M. Grigorenko and A. T. Vasilenko, Theory of Shells of Varying Stiffness, Vol. 4 of the five-volume series Methods of Shell Design [in Russian], Naukova Dumka, Kiev (1981).Google Scholar
  5. 5.
    Ya. M. Grigorenko and A. M. Timonin, “An approach to the numerical solution of two-dimensional problems of plate and shell theory with variable parameters,” Int. Appl. Mech., 23, No.6, 557–563 (1987).Google Scholar
  6. 6.
    L. H. Donnell, Beams, Plates, and Shells, McGraw Hill, New York (1976).Google Scholar
  7. 7.
    A. D. Kovalenko, Plates and Shells in Turbomachine Rotors [in Russian], Izd. AN USSR, Kiev (1955).Google Scholar
  8. 8.
    A. D. Kovalenko, Ya. M. Grigorenko, and L. A. Il'in, Theory of Thin Conical Shells and Its Application in Mechanical Engineering [in Russian], Izd. AN USSR, Kiev (1963).Google Scholar
  9. 9.
    A. D. Kovalenko, Ya. M. Grigorenko, and N. A. Lobkova, Design of Conical Shells with Linearly Varying Thickness [in Russian], Izd. AN USSR, Kiev (1961).Google Scholar
  10. 10.
    A. D. Kovalenko, Ya. M. Grigorenko, L. A. Il'in, and T. I. Polishchuk, Design of Conical Shells under Antisymmetric Loads [in Russian], Naukova Dumka, Kiev (1966).Google Scholar
  11. 11.
    V. V. Novozhilov, Theory of Thin Shells [in Russian], Sudostroenie, Leningrad (1962).Google Scholar
  12. 12.
    G. M. Fikhtengol'ts, Differential and Integral Calculus [in Russian], Vol. 3, Fizmatgiz, Moscow (1966).Google Scholar
  13. 13.
    Ya. M. Grigorenko and L. S. Rozhok, “Discrete Fourier-series method in problems of bending of variable-thickness rectangular plates,” J. Eng. Math., 46, 269–280 (2003).CrossRefGoogle Scholar
  14. 14.
    Ya. M. Grigorenko and L. S. Rozhok, “Stress analysis of orthotropic hollow noncircular cylinders,” Int. Appl. Mech., 40, No.6, 679–685 (2004).CrossRefGoogle Scholar
  15. 15.
    Ya. M. Grigorenko and L. S. Rozhok, “Stress solution for transversely isotropic corrugated hollow cylinders,” Int. Appl. Mech., 41, No.3, 277–282 (2005).CrossRefGoogle Scholar
  16. 16.
    Ya. M. Grigorenko and S. N. Yaremchenko, “Influence of variable thickness on displacements and stresses in nonthin cylindrical orthotropic shells with elliptic cross-section,” Int. Appl. Mech., 40, No.8, 900–907 (2004).CrossRefGoogle Scholar
  17. 17.
    Ya. M. Grigorenko and L. I. Zakhariichenko, “Studying the effect of the spatial frequency and amplitude of corrugation on the stress-strain state of cylindrical shells,” Int. Appl. Mech., 39, No.12, 1429–1435 (2003).CrossRefGoogle Scholar
  18. 18.
    A. D. Kovalenko, Ja. M. Grigorenko, L. A. Il'in, and T. I. Polishchuck, The Design of Conical Shells Subjected to Antisymmetric Loadings, NASA TT, F-518, Springfield, Va (1969).Google Scholar
  19. 19.
    V. G. Piskunov and A. O. Rasskazov, “Evolution of the theory of laminated plates and shells,” Int. Appl. Mech., 38, No.2, 135–166 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Ya. M. Grigorenko
    • 1
  • V. A. Tsybul'nik
    • 1
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations