Advertisement

International Applied Mechanics

, Volume 41, Issue 7, pp 766–769 | Cite as

Nonaxisymmetric Electroelastic Vibrations of a Hollow Cylinder with Radial Axis of Physicomechanical Symmetry

  • V. M. Shul'ga
Article

Abstract

An approach is proposed to calculate the natural frequencies and modes of vibrations of cylindrically anisotropic piezoelectric cylinders. The frequency equation is derived, and the frequency spectrum is analyzed

Keywords

natural frequency nonaxisymmetric electroelastic vibrations hollow cylinders rhombic piezoelectrics Navier conditions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENECS

  1. 1.
    E. Dieulesaint and D. Royer, Elastic Waves in Solids: Applications to Signal Processing, Wiley-Interscience, New York (1981).Google Scholar
  2. 2.
    V. T. Grinchenko, A. F. Ulitko, and N. A. Shul'ga, Electroelasticity, Vol. 5 of the five-volume series Mechanics of Coupled Fields in Structural Members [in Russian], Naukova Dumka, Kiev (1989).Google Scholar
  3. 3.
    V. M. Shul'ga, “Solving electroelastic equations in cylindrical coordinates,” Dop. NAN Ukrainy, No. 3, 71–74 (1999).Google Scholar
  4. 4.
    N. A. Shul'ga and A. M. Bolkisev, Vibrations of Piezoelectric Bodies [in Russian], Naukova Dumka, Kiev (1990).Google Scholar
  5. 5.
    I. F. Kirichok, “Radial vibrations and heating of a ring piezoplate under electric excitation applied to nonuniformly electroded surface,” Int. Appl. Mech., 40, No.3, 304–310 (2004).CrossRefGoogle Scholar
  6. 6.
    N. A. Shul'ga, “Propagation of elastic waves in periodically inhomogeneous media,” Int. Appl. Mech., 39, No.7, 763–796 (2003).CrossRefGoogle Scholar
  7. 7.
    N. A. Shul'ga, “Propagation of coupled waves interacting with an electromagnetic field in periodically inhomogeneous media,” Int. Appl. Mech., 39, No.10, 1146–1172 (2003).CrossRefGoogle Scholar
  8. 8.
    Ya. A. Zhuk and I. K. Senchenkov, “Modeling the stationary vibrations and dissipative heating of thin-walled inelastic elements with piezoactive layers,” Int. Appl. Mech., 40, No.5, 546–556 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • V. M. Shul'ga
    • 1
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations