International Applied Mechanics

, Volume 41, Issue 6, pp 657–665 | Cite as

Application of Discrete Fourier Series in the Stress Analysis of Cylindrical Shells of Variable Thickness with Arbitrary End Conditions

  • Ya. M. Grigorenko
  • V. A. Tsybul'nik


An approach is proposed to solve boundary-value stress—strain problems for cylindrical shells with thickness varying in two coordinate directions. The approach employs discrete Fourier series to separate circumferential variables. This makes it possible to reduce the problem to a one-dimensional one, which can be solved by the stable discrete-orthogonalization method. Examples are given


cylindrical shell variable thickness discrete Fourier series discrete orthogonalization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Z. Vlasov, General Theory of Shells and Its Application in Engineering [in Russian], Gostekhizdat, Moscow-Leningrad (1949).Google Scholar
  2. 2.
    A. L. Gol'denveizer, Theory of Elastic Thin Shells [in Russian], Nauka, Moscow (1976).Google Scholar
  3. 3.
    Ya. M. Grigorenko, Isotropic and Anisotropic Laminated Shells of Revolution with Variable Stiffness [in Russian], Naukova Dumka, Kiev (1973).Google Scholar
  4. 4.
    Ya. M. Grigorenko and A. T. Vasilenko, Theory of Variable Stiffness, Vol. 4 of the five-volume series Methods of Shell Design [in Russian], Naukova Dumka, Kiev (1981).Google Scholar
  5. 5.
    Ya. M. Grigorenko, A. T. Vasilenko, E. I. Bespalova, et al., Numerical Solution of Static Problems for Orthotropic Shells with Variable Characteristics [in Russian], Naukova Dumka, Kiev (1975).Google Scholar
  6. 6.
    L. H. Donnell, Beams, Plates, and Shells, McGraw Hill, New York (1976).Google Scholar
  7. 7.
    N. V. Kolkunov, Fundamentals of the Design of Elastic Shells: A College Textbook [in Russian], Vyssh. Shk., Moscow (1987).Google Scholar
  8. 8.
    V. V. Novozhilov, Theory of Thin Shells [in Russian], Sudostroenie, Leningrad (1962).Google Scholar
  9. 9.
    G. M. Fikhtengol'ts, Differential and Integral Calculus [in Russian], Vol. 3, Fizmatgiz, Moscow (1966).Google Scholar
  10. 10.
    Ya. M. Grigorenko and L. I. Zakhariichenko, “Solution of the problem of the stress state of noncircular cylindrical shells of variable thickness,” Int. Appl. Mech., 34, No.12, 1196–1203 (1998).Google Scholar
  11. 11.
    Ya. M. Grigorenko and L. I. Zakhariichenko, “Studying the effect of the spatial frequency and amplitude of corrugation on the stress-strain state of cylindrical shells,” Int. Appl. Mech., 39, No.12, 1429–1435 (2003).CrossRefGoogle Scholar
  12. 12.
    V. G. Piskunov and A. O. Rasskasov, “Evolution of the theory of laminated plates and shells,” Int. Appl. Mech., 38, No.2, 135–166 (2002).CrossRefGoogle Scholar
  13. 13.
    N. D. Semenyuk, “Stability of axially compressed noncircular cylindrical shells consisting of panels of constant curvature,” Int. Appl. Mech., 39, No.6, 726–735 (2003).CrossRefGoogle Scholar
  14. 14.
    A. T. Vasilenko and G. K. Sudavtsova, “Analysis of stresses and displacements in orthotropic noncircular cylindrical shells under centrifugal loads,” Int. Appl. Mech., 40, No.1, 91–96 (2004).CrossRefGoogle Scholar
  15. 15.
    K. P. Soldatos, “Mechanics of cylindrical shells with noncircular cross section. A survey,” Appl. Mech. Rev., 52, No.8, 237–274 (1999).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Ya. M. Grigorenko
    • 1
  • V. A. Tsybul'nik
    • 1
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations