International Applied Mechanics

, Volume 40, Issue 9, pp 994–1001

Two-dimensional stability problem for two interacting short fibers in a composite: In-line arrangement

  • A. N. Guz
  • V. A. Dekret
  • Yu. V. Kokhanenko
Article

Abstract

A solution is found to a plane problem for a composite material reinforced with two in-line fibers and subjected to longitudinal compression. The problem formulation is based on the piecewise-homogeneous model and the three-dimensional theory of stability. The dependence of the critical strain and buckling mode on the distance between the fibers is studied for various mechanical and geometrical characteristics of the composite components.

Keywords

composite material short fibers three-dimensional theory of stability inhomogeneous strain—stress state finite-difference method fiber interaction critical strain buckling mode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Guz, A. N. 1986Fundamentals of the Three-Dimensional Theory of Stability of Deformable BodiesVyshcha ShkolaKiev[in Russian]Google Scholar
  2. 2.
    A. N. Guz, V. A. Dekret, and Yu. V. Kokhanenko, “Plane stability problems for composites with finite reinforcement,” Mekh. Komp. Mater., No. 1, 3–10 (2001).Google Scholar
  3. 3.
    Guz, A. N., Dekret, V. A., Kokhanenko, Yu. V. 2000Solution of plane problems of the three-dimensional stability of a ribbon-reinforced compositeInt. Appl. Mech.3613171328Google Scholar
  4. 4.
    I. N. Molchanov, A. V. Popov, and A. N. Khimich, “An algorithm for solving a partial eigenvalue problem for large profile matrices,” Kibern. Sist. Anal., No. 2, 141–147 (1992).Google Scholar
  5. 5.
    Ortega, J. M., Poole, W. G.,Jr. 1981An Introduction to Numerical Methods for Differential EquationsPitman Publishing Inc.Marshfield, MassachusettsGoogle Scholar
  6. 6.
    Babich, I. Yu., Guz, A. N. 2002Stability of composite structural members (three-dimensional formulation)Int. Appl. Mech.3810481075Google Scholar
  7. 7.
    Guz, A. N. 2001Constructing the three-dimensional theory of stability of deformable bodiesInt. Appl. Mech.37137Google Scholar
  8. 8.
    Guz, A. N. 1999Fundamentals of the Three-Dimensional Theory of Stability of Deformable BodiesSpringer-VerlagBerlinGoogle Scholar
  9. 9.
    Kokhanenko, Yu. V., Fesenko, S. V. 2003Parameters of the edge effect as a function of the mechanical characteristics of a composite with an interfacial crackInt. Appl. Mech.3814411446Google Scholar
  10. 10.
    Kokhanenko, Yu. V., Zelenskii, V. S. 2003Influence of geometrical parameters on the critical load in three-dimensional stability problems for rectangular plates and beamsInt. Appl. Mech.3910731080Google Scholar
  11. 11.
    Kokhanenko, Yu. V. 1998Finite-element solution of plane problems of the linear elasticity theory of compositesInt. Appl. Mech.34987997Google Scholar
  12. 12.
    Kokhanenko, Yu. V. 2001Numerical study of three-dimensional stability problems for laminated and ribbon reinforced compositesInt. Appl. Mech.37317345Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • A. N. Guz
    • 1
  • V. A. Dekret
    • 1
  • Yu. V. Kokhanenko
    • 1
  1. 1.S. P. Timoshenko Institute of MechanicsNational Academy of Sciences of UkraineKiev

Personalised recommendations