Considerations for Synchronization in Body Area Networks for Human Activity Monitoring

  • Johan Plomp
  • Mikko Heiskanen
  • Mika Hillukkala
  • Tapio Heikkilä
  • Jari Rehu
  • Niek Lambert
  • Victor van Acht
  • Tom Ahola


In this paper, we highlight considerations for synchronization issues in body area networks. Requirements for the synchronization accuracy in body area networks depend on the application at hand. Synchronization may be needed for power management, sample ordering, calculation of stimulus responses and for sensor fusion. This paper provides a theoretical exercise to help understand the accuracy required for typical human motion sensing. It gives an overview of various synchronisation strategies used and implemented in prototype systems. Lessons learnt from practical implementations using Bluetooth, an IEEE 802.15.4 proprietary network and Nanonet are presented to illustrate the principles involved. The discussion provides some considerations and the requirements for typical WBAN applications.


Wireless body area networks Wireless networks Motion sensing Activity sensing Synchronization 



This work was part of the NUADU project resorting under the Eureka/ITEA programme and supported by the funding agencies in the involved countries (Finland, The Netherlands, France and Spain). The Nanonet solution and the IEEE802.15.4 system used in rehabilitation were developed in collaboration with other projects.


  1. 1.
    M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, The flooding time synchronization protocol. In: Proceedings of the Second international Conference on Embedded Networked Sensor Systems, November 2004.Google Scholar
  2. 2.
    J. Elson, L. Girod, and D. Estrin, Fine-grained time synchronization using reference broadcasts. In: Proceedings of Fifth Symposium on Operating Systems Design and Implementation, December 2002.Google Scholar
  3. 3.
    S. Ganeriwal, R. Kumar, and M. B. Srivastava, Timingsync protocol for sensor network. In: Proceedings of First ACM Conference on Embedded Networked Sensor Systems, November 2003.Google Scholar
  4. 4.
    Crossbow Wireless Module Portfolio (read 10.1.2008):
  5. 5.
    D. Cox, E. Jovanov, and A. Milenkovic, Time synchronization for ZigBee networks. In: Proceedings of the 37th IEEE Southeastern Symposium on System Theory (SSST ‘05), pp. 135–138, March 2005.Google Scholar
  6. 6.
    J. Espina, T. Falck, J. Muehlsteff, and X. Aubert, Wireless body sensor network for continuous cuff-less blood pressure monitoring. In: Proceedings of the 3rd IEEE/EMBS International Summer School on Medical Devices and Biosensors, pp. 11–15, September 2006.Google Scholar
  7. 7.
    M. Ringwald, and K. Römer, Practical time synchronization for bluetooth scatternets. In: Proceedings of the 4th International Conference on Broadband Communications, Networks, and Systems (BROADNETS 2007). Raleigh, North Carolina, USA, September 2007.Google Scholar
  8. 8.
    BTnodes—A Distributed Environment for Prototyping AD Hoc Networks (read 21.1.2008). Available:
  9. 9.
    R. Casas, H. J. Gracia, A. Marco, and J. L. Falco, Synchronization in wireless sensor networks using Bluetooth. In: 3rd International Workshop on Intelligent Solutions in Embedded Systems, pp. 79–88, May 2005.Google Scholar
  10. 10.
    L. Lo Bello, and O. Mirabella, Clock synchronization issues in bluetooth-based industrial measurements. In: International IEEE Workshop on Factory Communication Systems, pp. 193–202, June 2006.Google Scholar
  11. 11.
    E. Strömmer, M. Hillukkala, A.Ylisaukko-oja, Ultra-low power sensors with near field communication for mobile applications, WSAN 2007. Available:
  12. 12.
    H. Ailisto, T. Matinmikko, J. Häikiö, et al., Physical browsing with NFC technology, VTT Research Notes: 2400, 2007.
  13. 13.
    T. Ahola, P. Korpinen, J. Rakkola, T. Rämö, J. Salminen, and J. Savolainen, Wearable FPGA based wireless sensor platform. In: EMBS2007, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Google Scholar
  14. 14.
    J. Smith, and P. Gossett, A flexible sampling-rate conversion method, acoustics, speech, and signal processing. In: IEEE International Conference on ICASSP ‘84, Vol. 9, p. 112, Mar 1984.Google Scholar
  15. 15.
    M. Aoun, A. Schoofs, and P. van der Stok, Efficient time synchronisation for wireless sensor networks in an industrial setting. In: Proceedings of 6th ACM Conference on Embedded Networked Sensor Systems, November 2008, ACM 978-1-59593-990-6/08/11.Google Scholar
  16. 16.
    V. van Acht, E. Bongers, N. Lambert, and R. Verberne, Miniature wireless inertial sensor for measuring human motions. In: Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBS 2007, doi: 10.1109/IEMBS.2007.4353790, ISBN 978-1-4244-0787-3, p6278-6281.
  17. 17.
    M. Aoun, J. Catalano, and P. van der Stok, Distributed task synchronization in wireless sensor networks. In: Proceedings of Wireless Sensor Networks, 6th European Conference, EWSN 2009, Springer Berlin/Heidelberg, doi: 10.1007/978-3-642-00224-3, ISBN 978-3-642-00223-6, p150-165.
  18. 18.
    Time Synchronization of the nanoNET wireless Nodes, Application Note v 1.01. Nanotron Technologies Gmbh, Berlin, Germany, 10 p, 2005.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Johan Plomp
    • 1
  • Mikko Heiskanen
    • 1
  • Mika Hillukkala
    • 1
  • Tapio Heikkilä
    • 1
  • Jari Rehu
    • 1
  • Niek Lambert
    • 2
  • Victor van Acht
    • 2
  • Tom Ahola
    • 3
  1. 1.VTT - Technical Research Centre of FinlandEspooFinland
  2. 2.Philips ResearchEindhovenNetherlands
  3. 3.Nokia Research CentreHelsinkiFinland

Personalised recommendations