Using the log-linear cognitive diagnosis model to classify individuals in career and educational assessment

  • Xue XingEmail author


The log-linear cognitive diagnosis model (LCDM) is a modern technique that dichotomously classifies individuals (e.g., possession and non-possession) on attributes of a multidimensional construct, which is particularly suited to diagnostic and formative assessments where a classification decision is desired (e.g., to assign intervention or not). This article provides a tutorial for conducting analyses using the LCDM and illustrates an application in career assessment with simulated data to showcase the unique types of diagnostic feedback the LCDM provides. The article concludes with a discussion of the ideal contexts in which to apply the model and its implications in career and educational assessment.


Log-linear cognitive diagnosis model Diagnostic classification Career and educational assessment 


Utiliser le Modèle Log-linéaire de Diagnostique Cognitif (MLDC) pour Classifier les Individus lors d’Évaluations Pédagogiques et de Carrière Le modèle log-linéaire de diagnostic cognitif (MLDC) est une technique moderne qui classe les individus dichotomiquement (p.e. possession et non-possession) sur les attributs d’un concept multidimensionnel, ce qui est particulièrement approprié pour les diagnostiques et évaluations pédagogiques pour lesquelles une décision de classification est désirée (p.e. attribuer une intervention ou non). Cet article fournit un tutoriel pour conduire des analyses en utilisant la MLDC et illustre une application en évaluation de carrière avec des données simulées afin de montrer les types uniques de feedback diagnostiques fournis par la MLDC. Cet article conclut avec une discussion sur les contextes idéaux dans lesquels appliquer le modèle et ses implications pour les évaluations pédagogiques et de carrière.


Verwendung des log-linearen kognitiven Diagnosemodells zur Klassifizierung von Personen im Rahmen von schulischen und karriereorientierten Assessments Das log-lineare kognitive Diagnosemodell (log-linear cognitive diagnosis model, LCDM) ist eine moderne Methode, um Personen auf der Basis von Attributen eines mehrdimensionalen Konstruktes dichotom (z.B. vorhanden und nicht vorhanden) zu klassifizieren. Speziell geeignet ist diese Methode im Zusammenhang mit diagnostischen oder formativen Assessments, wenn es darum geht, eine klassifikatorische Entscheidung zu treffen (z.B. Einschluss in die Intervention oder nicht). Der Beitrag stellt ein Tutorial zur Verfügung, um Analysen anhand des LCDM durchzuführen und illustriert eine Anwendung innerhalb eines karriereorientierten Assessments mit simulierten Daten, um vorzuführen, welche Arten von diagnostischen Feedbacks das LCDM zur Verfügung stellt. Der Artikel schliesst mit einer Diskussion geeigneter Kontexte, in denen das Modell mit seinen Implikationen bei karriereorientierten und schulischen Assessments idealerweise zum Einsatz kommt.


Utilización de los modelos log-linear de diagnosis cognitiva para la clasificación de inidividuos en los procesos de evaluación educativa y de la carrera El modelo log-linear de diagnosis cognitiva (LCDM) es una técnica moderna que clasifica dicotómicamente a los sujetos (p.e. posesión y no-posesión) en atributos de un constructo multidimensional que es particularmente adecuado a las evaluaciones diagnósticas y formativas en las que se desea hacer una decisión clasificatoria (p.e. asignar una intervención o no). Este artículo proporciona un tutorial para desarrollar análisis usando el LCDM e ilustra una aplicación en la evaluación de la carrera con datos simulados como muestra de la singularidad de tipos de retroalimentación diagnóstica que el LCDM proporciona. Este artículo concluye con una discusión sobre los contextos ideales de aplicación del modelo y las implicaciones para la evaluación educacional y de la carrera.



  1. Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52(3), 317–332. Scholar
  2. Bradshaw, L., & Templin, J. (2014). Combining item response theory and diagnostic classification models: A psychometric model for scaling ability and diagnosing misconceptions. Psychometrika, 79(3), 403–425. Scholar
  3. Crites, J. O. (1978). Career maturity inventory. Monterey, CA: McGraw Hill.Google Scholar
  4. Crites, J. O., & Savickas, M. L. (1996). Revision of the career maturity inventory. Journal of Career Assessment, 4(2), 131–138.CrossRefGoogle Scholar
  5. Crites, J. O., & Savickas, M. L. (2011). Career Maturity Inventory-Form C. Kent, OH. Available from
  6. Gelfand, M. J., Nishii, L. H., & Raver, J. L. (2006). On the nature and importance of cultural tightness-looseness. Journal of Applied Psychology, 91(6), 1225–1244.CrossRefGoogle Scholar
  7. Glavin, K. (2015). Measuring and assessing career maturity and adaptability. In P. J. Hartung, M. L. Savickas, & W. W. Bruce (Eds.), APA handbook of career intervention, Volume 2: Applications (pp. 183–192). Washington, DC: American Psychological Association. Retrieved from
  8. Hartung, P. J., & Subich, L. M. (2011). Developing self in work and career: Concepts, cases, and contexts. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  9. Hartz, S. M. (2002). A Bayesian framework for the unified model for assessing cognitive abilities: Blending theory with practicality (Order No. 3044108). Available from ProQuest Dissertations & Theses Global. (305590285). Retrieved from
  10. Hays, D. G. (2013). In Hood A. B. (Ed.), Assessment in counseling: A guide to the use of psychological assessment procedures (5th ed.). Alexandria, VA: American Counseling Association.Google Scholar
  11. Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74(2), 191–210. Scholar
  12. Janeiro, I. N., Mota, L. P., & Ribas, A. M. (2014). Effects of two types of career interventions on students with different career coping styles. Journal of Vocational Behavior, 85(1), 115–124. Scholar
  13. Jang, E. E. (2005). A validity narrative: Effects of reading skills diagnosis on teaching and learning in the context of NG TOEFL (Order No. 3182288). Available from ProQuest Dissertations & Theses Global. (305001552). Retrieved from
  14. Jurich, D. P., & Bradshaw, L. P. (2014). An illustration of diagnostic classification modeling in student learning outcomes assessment. International Journal of Testing, 14(1), 49–72. Scholar
  15. Madison, M. J., & Bradshaw, L. P. (2015). The effects of Q-matrix design on classification accuracy in the log-linear cognitive diagnosis model. Educational and Psychological Measurement, 75(3), 491–511. Scholar
  16. Muthén, L. K., & Muthén, B. O. (1998–2012). Mplus user’s guide (7th ed.). Los Angeles, CA: Muthén & Muthén.Google Scholar
  17. Rupp, A. A., & Templin, J. L. (2008). Unique characteristics of diagnostic classification models: A comprehensive review of the current state-of-the-art. Measurement: Interdisciplinary Research and Perspectives, 6(4), 219–262.
  18. Rupp, A. A., Templin, J., & Henson, R. A. (2010). Diagnostic measurement: Theory, methods, and applications. New York: Guilford.Google Scholar
  19. Savickas, M. L. (2013). Career construction theory and practice. In R. W. Lent & S. D. Brown (Eds.), Career development and counseling: Putting theory and research to work (2nd ed., pp. 147–183). Hoboken, NJ: Wiley.Google Scholar
  20. Savickas, M. L., & Porfeli, E. J. (2011). Revision of the Career Maturity Inventory: The adaptability form. Journal of Career Assessment, 19(4), 355–374. Scholar
  21. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. Scholar
  22. Sclove, S. L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52(3), 333–343. Scholar
  23. Skaggs, G., Wilkins, J. L. M., & Hein, S. F. (2016). Grain size and parameter recovery with TIMSS and the general diagnostic model. International Journal of Testing, 16(4), 310–330. Scholar
  24. Suskie, L. (2018). Assessing student learning: A common sense guide (3rd ed.). San Francisco, CA: Jossey-Bass.Google Scholar
  25. Templin, J., & Bradshaw, L. (2014). Hierarchical diagnostic classification models: A family of models for estimating and testing attribute hierarchies. Psychometrika, 79(2), 317–339. Scholar
  26. Templin, J., & Hoffman, L. (2013). Obtaining diagnostic classification model estimates using mplus. Educational Measurement: Issues and Practice, 32(2), 37–50. Scholar
  27. von Davier, M. (2014). The log-linear cognitive diagnostic model (LCDM) as a special case of the general diagnostic model (GDM) (2330-8516). Retrieved from Wiley Online Library:
  28. Wood, C., & Hays, D. G. (2013). A counselor’s guide to career assessment instruments (6th ed.). Broken Arrow, OK: National Career Development Association.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Teaching and LearningUniversity of Nevada, Las VegasLas VegasUSA

Personalised recommendations