The Decoy-State Measurement-Device-Independent Quantum Key Distribution with Heralded Single-Photon Source

  • Ye-Feng HeEmail author
  • Wen-Ping Ma


Based on heralded single-photon source (HSPS), a decoy-state measurement-device-independent quantum key distribution (MDI-QKD) protocol is proposed in this paper. The MDI-QKD protocol mainly uses orbital angular momentum (OAM) states and pulse position modulation (PPM) technology to realize the coding of the signal states in heralded single-photon source. The three-intensity decoy states are used to avoid the attacks against the light source. Moreover, the formula of key generation rate is given by computing the lower bound of the yield of single-photon pairs and the upper bound of the error rate of single-photon pairs. Numerical simulation shows that the new MDI-QKD protocol has high key generation rate and low error rate. Moreover, the secure communication distance can be up to 450 km.


Quantum cryptography Measurement-device-independent quantum key distribution Heralded single-photon source Orbital angular momentum Pulse position modulation 



This work is supported by the National Natural Science Foundation of China (Grant Nos. 61802302, 61772418).


  1. 1.
    Bennett, C.H., Brassard, G.: In: Proceedings of IEEE international conference on computers, systems and signal processing, Bangalore, India, pp. 175–179. IEEE Press, New York (1984)Google Scholar
  2. 2.
    Kalra, M., Poonia, R.C.: In: Advances in intelligent systems and computing, Singapore, pp. 969–978. Springer, Singapore (2019)Google Scholar
  3. 3.
    Zhu, J.R., Li, J., Zhang, C.M., et al.: Quantum Inf. Process. 16, 238 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Guo, Y., Wang, X.X., Zhang, L., et al.: Int. J. Theor. Phys. 58, 209 (2019)CrossRefGoogle Scholar
  5. 5.
    He, Y.F., Ma, W.P.: Quantum Inf. Process. 14, 3483 (2015)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Xu, G.B., Wen, Q.Y., Gao, F., et al.: Quantum Inf. Process. 13, 2587 (2014)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Zhang, C.M., Zhu, J.R., Wang, Q.: Eur. Phys. J. D. 72, 108 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    He, Y.F., Ma, W.P.: Quantum Inf. Process. 15, 5023 (2016)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Yuen, H.P.: Quantum Inf. Process. 13, 2241 (2014)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Sun, S.H., Liang, L.M.: Appl. Phys. Lett. 101, 071107 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Makarov, V., Skaar, J.: Quantum Infor. Comput. 8, 0622 (2008)Google Scholar
  12. 12.
    Zhao, Y., Fung, C.H., Qi, B., et al.: Phys. Rev. A 78, 042333 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Makarov, V.: New J. Modern Opt. 11, 065003 (2009)Google Scholar
  14. 14.
    Barrett, J., Hardy, L., Kent, A.: Phys. Rev. Lett. 95, 010503 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Lo, H.K., Curty, M., Qi, B.: Phys. Rev. Lett. 108, 130503 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Liu, L., Guo, F.Z., Wen, Q.Y.: Sci. Rep.-UK. 7, 11370 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Zhang, C.M., Zhu, J.R., Wang, Q.: J. Lightwave Technol. 35, 4574 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Mao, C.C., Zhou, X.Y., Zhu, J.R., et al.: Opt. Express. 26, 13289 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    Zhou, Y.H., Yu, Z.W., Wang, X.B.: Phys. Rev. A 93, 042324 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Li, N., Zhang, Y., Wen, S., et al.: Int. J. Theor. Phys. 57, 83 (2018)CrossRefGoogle Scholar
  21. 21.
    Jiang, C., Yu, Z.W., Wang, X.B.: Phys. Rev. A 94, 062323 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Zhu, Z.D., Chen, D., Zhao, S.H.: Quantum Inf. Process. 18, 33 (2019)ADSCrossRefGoogle Scholar
  23. 23.
    Yin, H.L., Chen, T.Y., Yu, Z.W., et al.: Phys. Rev. Lett. 117, 190501 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Tang, Z.Y., Wei, K.J., Bedroya, O., et al.: Phys. Rev. A 93, 042308 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Da Silva, T.F., Vitoreti, D., Xavier, G.B., et al.: Phys. Rev. A 88, 052303 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Tang, Z.Y., Liao, Z.F., Xu, F.H., et al.: Phys. Rev. Lett. 112, 190503 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Tamaki, K., Lo, H.K., Fred, C.H.F., et al.: Phys. Rev. A 85, 042307 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Ma, X.F., Razavi, M.: Phys. Rev. A 86, 062319 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Chan, P., Slater, J.A., Lucio-Martinez, I., et al.: Opt. Express. 22, 12716 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Mafu, M., Dudley, A., Goyal, S.: Phys. Rev. A 88, 032305 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Wang, L., Zhao, S.M., Gong, L.Y., et al.: Chin. Phys. B 24, 120307 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    wang, L., Zhou, Y.Y., Zhou, X.J.: Optoelectr. Lett. 14, 138 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    Wang, Q., Wang, X.B.: Phys. Rev. A 88, 052332 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Zhou, Y.Y., Zhou, X.J., Su, B.B.: Optoelectr. Lett. 12, 0148 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    Zhou, X.Y., Zhang, C.H., Guo, G.C., et al.: Quantum Inf. Process. 15, 2455 (2016)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Zhou, X.Y., Zhang, C.H., Zhang, C.M., et al.: Phys. Rev. A 96, 052337 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    Zhang, C.H., Zhang, C.M., Guo, G.C., et al.: Opt. Express. 26, 4219 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    Li, Q., Zhu, C.H., Ma, S.Q., et al.: Int. J. Theor. Phys. 57, 2192 (2018)CrossRefGoogle Scholar
  39. 39.
    Gao, F., Qin, S.J., Huang, W., et al.: Sci. China-Phys. Mech. Astron. 62, 070301 (2019)CrossRefGoogle Scholar
  40. 40.
    He, Y.F., Ma, W.P.: Quantum Inf. Process. 16, 252 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    He, Y.F., Ma, W.P.: Quantum Inf. Process. 18, 4 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Cyberspace SecurityXi’an University of Posts and TelecommunicationsXi’anChina
  2. 2.State Key Laboratory of Integrated Service NetworksXidian UniversityXi’anChina

Personalised recommendations