Advertisement

Quantum Decoherence of Gaussian Steering and Entanglement in Hawking Radiation and Thermal Bath

Abstract

We study the effects of Hawking radiation and bath temperature on quantum steering and entanglement for a two-mode Gaussian state exposed in the background of a black hole and immersed in the two independent thermal baths. We find that both the effects can destroy the quantum steering and entanglement. Quantum steering always exists sudden death for any Hawking temperature and any bath temperature, but entanglement does not in zero-temperature thermal bath. Both the Hawking radiation and the asymmetry of thermal baths can induce the asymmetry of quantum steering, but the latter effect is much weaker than the former. An unintuitive result is that the observer who stays in the Hawking radiation or in the thermal bath with higher temperature has more stronger steerability than the other one. We also find that Hawking radiation and thermal noise can change the asymptotic behavior of steering and entanglement versus the squeezing parameter.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

  2. 2.

    Bell, J. S.: On the Einstein Podolsky Rosen paradox. Physics (Long Island City) 1, 195–200 (1964)

  3. 3.

    Masanes, L.: All bipartite entangled states are useful for information processing. Phys. Rev. Lett. 96, 150501 (2006)

  4. 4.

    Werner, R. F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

  5. 5.

    Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Phil. Soc. 31, 555–563 (1935)

  6. 6.

    Schrödinger, E.: Probability relations between separated systems. Proc. Camb. Phil. Soc. 32, 446–452 (1936)

  7. 7.

    Wiseman, H. M., Jones, S. J., Doherty, A. C.: Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)

  8. 8.

    Skrzypczyk, P., Navascués, M., Cavalcanti, D.: Quantifying Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 112, 180404 (2014)

  9. 9.

    Walborn, S. P., Salles, A., Gomes, R. M., Toscano, F., Souto Ribeiro, P. H.: Revealing hidden Einstein-Podolsky-Rosen nonlocality. Phys. Rev. Lett. 106, 130402 (2011)

  10. 10.

    Bowles, J., Vértesi, T., Quintino, M. T., Brunner, N.: One-way Einstein-Podolsky-Rosen Steering. Phys. Rev. Lett. 112, 200402 (2014)

  11. 11.

    He, Q. Y., Gong, Q. H., Reid, M. D.: Classifying directional gaussian entanglement, Einstein-Podolsky-Rosen steering, and discord. Phys. Rev. Lett. 114, 060402 (2015)

  12. 12.

    Li, C. M., Chen, K., Chen, Y. N., Zhang, Q., Chen, Y. A., Pan, J. W.: Genuine high-order Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 115, 010402 (2015)

  13. 13.

    Marciniak, M., Rutkowski, A., Yin, Z., Horodecki, M., Horodecki, R.: Unbounded violation of quantum steering inequalities. Phys. Rev. Lett. 115, 170401 (2015)

  14. 14.

    He, Q. Y., Rosales-Zárate, L., Adesso, G., Reid, M. D.: Secure continuous variable teleportation and Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 115, 180502 (2015)

  15. 15.

    Sainz, A. B., Brunner, N., Cavalcanti, D., Skrzypczyk, P., Vertesi, T.: Postquantum steering. Phys. Rev. Lett. 115, 190403 (2015)

  16. 16.

    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

  17. 17.

    Kogias, I., Lee, A. R., Ragy, S., Adesso, G.: Quantification of gaussian quantum steering. Phys. Rev. Lett. 114, 060403 (2015)

  18. 18.

    Peres, A., Terno, D. R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93 (2004)

  19. 19.

    Fuentes-Schuller, I., Mann, R. B.: Alice falls into a black hole: Entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)

  20. 20.

    Alsing, P. M., Fuentes-Schuller, I., Mann, R. B., Tessier, T. E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006)

  21. 21.

    Adesso, G., Fuentes-Schuller, I., Ericsson, M.: Continuous-variable entanglement sharing in noninertial frames. Phys. Rev. A 76, 062112 (2007)

  22. 22.

    Aspachs, M., Adesso, G., Fuentes, I.: Optimal quantum estimation of the Unruh-Hawking effect. Phys. Rev. Lett 105, 151301 (2010)

  23. 23.

    Wang, J., Pan, Q., Jing, J.: Entanglement of coupled massive scalar field in background of dilaton black hole. Phys. Lett. B 602, 202 (2010)

  24. 24.

    Hosler, D. J., van de Bruck, C., Kok, P.: Information gap for classical and quantum communication in a Schwarzschild spacetime. Phys. Rev. A 85, 042312 (2012)

  25. 25.

    Friis, N., Lee, A. R., Truong, K., Sabín, C., Solano, E., Johansson, G., Fuentes, I.: Relativistic quantum teleportation with superconducting circuits. Phys. Rev. Lett. 110, 113602 (2013)

  26. 26.

    Doukas, J., Brown, E. G., Dragan, A., Mann, R. B.: Entanglement and discord: Accelerated observations of local and global modes. Phys. Rev. A 87, 012306 (2013)

  27. 27.

    Su, D., Ralph, T. C.: Quantum communication in the presence of a horizon. Phys. Rev. D 90, 084022 (2014)

  28. 28.

    Wang, J., Jing, J., Fan, H.: Quantum discord and measurement-induced disturbance in the background of dilaton black holes. Phys. Rev. D 90, 025032 (2014)

  29. 29.

    Ahmadi, M., Bruschi, D. E., Fuentes, I.: Quantum metrology for relativistic quantum fields. Phys. Rev. D 89, 065028 (2014)

  30. 30.

    Ahmadi, M., Smith, A. R. H., Dragan, A.: Communication between inertial observers with partially correlated reference frames. Phys. Rev. A 92, 062319 (2015)

  31. 31.

    Chȩcińska, A., Dragan, A.: Communication between general-relativistic observers without a shared reference frame. Phys. Rev. A 92, 012321 (2015)

  32. 32.

    Blasco, A., Garay, L. J., Martín-Benito, M., Martín-Martínez, E.: Violation of the strong huygens principle and timelike signals from the early universe. Phys. Rev. Lett. 114, 141103 (2015)

  33. 33.

    Richter, B., Omar, Y.: Degradation of entanglement between two accelerated parties: Bell states under the Unruh effect. Phys. Rev. A 92, 022334 (2015)

  34. 34.

    Wu, S. M., Zeng, H. S.: Multipartite quantum coherence andmonogamy for Dirac fields subject to Hawking radiation. Quantum Inf. Process. 18, 305 (2019)

  35. 35.

    Wu, S. M., Zeng, H. S., Liu, T. H.: Quantum coherence of Gaussian states in curved spacetime. Results in Physics 14, 102398 (2019)

  36. 36.

    Hawking, S. W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)

  37. 37.

    Hawking, S. W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460 (1976)

  38. 38.

    Terashima, H.: Entanglement entropy of the black hole horizon. Phys. Rev. D 61, 104016 (2000)

  39. 39.

    Wang, J., Cao, H., Jing, J., Fan, H.: Gaussian quantum steering and its asymmetry in curved spacetime. Phys. Rev. D 93, 125011 (2016)

  40. 40.

    Sabin, C., Adesso, G.: Generation of quantum steering and interferometric power in the dynamical Casimir effect. Phys. Rev. A 92, 042107 (2015)

  41. 41.

    Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N. J., Ralph, T. C., Shapiro, J. H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

  42. 42.

    Simon, R.: Peres-Horodecki Separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000)

  43. 43.

    Duan, L. M., Giedke, G., Cirac, J. I., Zoller, P.: Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722 (2000)

  44. 44.

    Adesso, G., Serafini, A., Illuminati, F.: Extremal entanglement and mixedness in continuous variable systems. Phys. Rev. A 70, 022318 (2004)

  45. 45.

    Birrell, N. D., Davies, P. C. W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

  46. 46.

    Fabbri, A., Navarro-Salas, J.: Modeling Black Hole Evaporation. Imperial College Press, London (2005)

  47. 47.

    Bruschi, D. E., Dragan, A., Fuentes, I., Louko, J.: Particle and antiparticle bosonic entanglement in noninertial frames. Phys. Rev. D 86, 025026 (2012)

  48. 48.

    Gorini, V., Kossakowski, A., Sudarshan, E. C. G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)

  49. 49.

    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

  50. 50.

    Heinosaari, T., Holevo, A. S., Wolf, M. M.: The semigroup structure of Gaussian channels. Quantum Inform. Comput. 10, 0619 (2010)

  51. 51.

    Isar, A., Sandulescu, A., Scutaru, H., Stefanescu, E., Scheid, W.: Open quantum systems. Int. J. Mod. Phys. E 3, 635 (1994)

  52. 52.

    Ahno, D.: Unruh effect as a noisy quantum channel. Phys. Rev. A 98, 022308 (2018)

  53. 53.

    Sandulescu, A., Scutaru, H.: Open quantum systems and the damping of collective modes in deep inelastic collisions. Ann. Phys. 173, 277 (1987)

  54. 54.

    Alijanzadeh, H., Isar, A., Akbari-kourbolagh, Y.: Quantum fidelity of two-mode Gaussian states in the two-reservoir model. Rom. Rep. Phys 68, 1 (2016)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11275064), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20124306110003), and the Construct Program of the National Key Discipline.

Author information

Correspondence to Hao-Sheng Zeng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here we present the solving process of master equation (16). We first consider the case of single mode bosonic field. Defining the covariance matrix

$$ \sigma(t) = \left( {\begin{array}{ll} \sigma_{xx}(t) & \sigma_{xp}(t) \\ \sigma_{px}(t) & \sigma_{pp}(t) \end{array}} \right), $$
(22)

for the quadrature operators \(\hat {x}\) and \(\hat {p}\) of the bosonic mode, we obtain from (16) the system of equations [51, 53, 54]

$$ \frac{\mathrm{d}\sigma (t)}{\mathrm{d}t}=W_{1}\sigma(t)+\sigma(t)W^{\mathrm{T}}_{1}+2D_{1}, $$
(23)

where

$$ W_{1} = \left( {\begin{array}{cc} -(\lambda_{1}-\mu_{1}) & 1 \\ -1 & -(\lambda_{1}+\mu_{1}) \end{array}} \right) $$
(24)

with dissipative constant λ1. The diffusion matrix D1 may be determined by the asymptotic condition, which leads to

$$ D_{1}=-\frac{1}{2}[W_{1}\sigma(\infty)+\sigma(\infty)W^{\mathrm{T}}_{1}]. $$
(25)

The solution of (23) can be written as

$$ \sigma(t)=X_{1}(t)\sigma(0)X^{\mathrm{T}}_{1}+Y_{1}(t), $$
(26)

with

$$ Y_{1}(t)=-X_{1}(t)\sigma(\infty)X^{\mathrm{T}}_{1}+\sigma(\infty). $$
(27)

Where the matrix \(X_{1}(t)=\exp (W_{1}t)\) fulfils the asymptotic condition \(\lim _{t\rightarrow \infty }X_{1}(t)=0\). In the underdamped case with ω1 > μ1, X1(t) is given by (19).

If the bosonic mode is finally in the thermal equilibrium at temperature T1, then the asymptotic state is described by the Gibbs state,

$$ \sigma(\infty) = \frac{1}{2}\coth\frac{1}{2T_{1}}\left( {\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}} \right). $$
(28)

For the two-mode Gaussian state (15) considered in the text, with each mode coupled to its own thermal bath, the evolution of the compound system is then given by (18), and the compound Gaibbs state is given by (20).

In our model, T1 denotes the temperature of the thermal bath in the flat spacetime, and T2 denotes the temperature of the thermal bath outside the horizon of the black hole. The bath temperature T2 would be enhanced by the Hawking radiation compared with the flat spacetime. Formally, T2 is determined by the total number of photons \(\bar {n}_{tot}\) through the expression \(\bar {n}_{tot}=[e^{h\varOmega /kT_{2}}-1]^{-1}\), where Ω is the frequency of the bosonic mode, and \(\bar {n}_{tot}=\bar {n}_{the}+\bar {n}_{rad}\), with \(\bar {n}_{the}\) being the thermal photon number irrelevant to Hawking radiation and \(\bar {n}_{rad}\) the photon number of Hawking radiation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Zeng, H. Quantum Decoherence of Gaussian Steering and Entanglement in Hawking Radiation and Thermal Bath. Int J Theor Phys (2020) doi:10.1007/s10773-019-04372-5

Download citation

Keywords

  • Gaussian steering
  • Gaussian entanglement
  • Hawking radiation
  • Thermal bath