A Coplanar XOR Using NAND-NOR-Inverter and Five-Input Majority Voter in Quantum-Dot Cellular Automata Technology

  • Yongqiang Zhang
  • Feifei Deng
  • Xin Cheng
  • Guangjun XieEmail author


Quantum-dot cellular automata (QCA) offer a promising design paradigm for complementing conventional integrated circuits. The XOR plays a crucial role in arithmetic circuits and communications. Existing design schemes consume more operational components and thus are inefficient in terms of area and QCA cost at present. In this paper, a coplanar XOR composed of an NAND-NOR-Inverter (NNI) and a five-input majority voter (M5) is proposed for the first time. This new structure not only excludes complex crossovers but also has full accessibility to its input/output pins. The simulation waveforms and performance figures verify the functionality and merits of the proposed circuits. The implementation of the proposed XOR scheme in QCA consumes less overhead than that of its counterparts. Its occupied area and QCA cost are respectively reduced by 9.26% and 33.33% compared with the state-of-the-art XOR. To prove its practicability, multi-bit parity generators are also proposed in the means of hierarchically cascading the proposed XOR gates. The area and cost of the proposed 32-bit generator are respectively reduced by 39.47% and 33.33% compared with the existing best design.


XOR Coplanar layout I/O accessibility Parity generator Quantum-dot cellular automata 



This work is supported by the Fundamental Research Funds for the Central Universities of China (No. JZ2019HGTB0092).


  1. 1.
    Khouri, K.S., Jha, N.K.: Leakage power analysis and reduction during behavioral synthesis. IEEE Trans. Very Large Scale Integr. VLSI Syst. 10(6), 876–885 (2002). CrossRefGoogle Scholar
  2. 2.
    Adan, A.O., Higashi, K., Fukushima, Y.: Analytical threshold voltage model for ultrathin SOI MOSFETs including short-channel and floating-body effects. IEEE Trans. Electron Devices. 46(4), 729–737 (1999). ADSCrossRefGoogle Scholar
  3. 3.
    Awano, Y., Sato, S., Nihei, M., Sakai, T., Ohno, Y., Mizutani, T.: Carbon nanotubes for VLSI: interconnect and transistor applications. Proc. IEEE. 98(12), 2015–2031 (2010). CrossRefGoogle Scholar
  4. 4.
    Anu, Sharma, A., Khan, M.S., Srivastava, A., Husain, M., Khan, M.S.: High-performance single-electron transistor based on metal–organic complex of thiophene: first principle study. IEEE Trans. Electron Devices. 64(11), 4628–4635 (2017). ADSCrossRefGoogle Scholar
  5. 5.
    Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE. 85(4), 541–557 (1997). CrossRefGoogle Scholar
  6. 6.
    Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994). ADSCrossRefGoogle Scholar
  7. 7.
    Riente, F., Turvani, G., Vacca, M., Roch, M.R., Zamboni, M., Graziano, M.: ToPoliNano: a CAD tool for Nano magnetic logic. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(7), 1061–1074 (2017). CrossRefGoogle Scholar
  8. 8.
    Pulimeno, A., Graziano, M., Sanginario, A., Cauda, V., Demarchi, D., Piccinini, G.: Bis-Ferrocene molecular QCA wire: Ab initio simulations of fabrication driven fault tolerance. IEEE Trans. Nanotechnol. 12(4), 498–507 (2013). ADSCrossRefGoogle Scholar
  9. 9.
    Livadaru, L., Xue, P., Shaterzadeh-Yazdi, Z., DiLabio, G.A., Mutus, J., Pitters, J.L., Sanders, B.C., Wolkow, R.A.: Dangling-bond charge qubit on a silicon surface. New J. Phys. 12, 1–15 (2010). CrossRefGoogle Scholar
  10. 10.
    Pitters, J.L., Livadaru, L., Haider, M.B., Wolkow, R.A.: Tunnel coupled dangling bond structures on hydrogen terminated silicon surfaces. J. Chem. Phys. 134(6), 1–6 (2011). CrossRefGoogle Scholar
  11. 11.
    Kawai, H., Ample, F., Wang, Q., Yeo, Y.K., Saeys, M., Joachim, C.: Dangling-bond logic gates on a Si(100)-(2 x 1)-H surface. J. Phys.-Condes. Matter. 24(9), 1–13 (2012). CrossRefGoogle Scholar
  12. 12.
    Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004). ADSCrossRefGoogle Scholar
  13. 13.
    Navi, K., Farazkish, R., Sayedsalehi, S., Rahimi Azghadi, M.: A new quantum-dot cellular automata full-adder. Microelectron. J. 41(12), 820–826 (2010). CrossRefGoogle Scholar
  14. 14.
    Chabi, A.M., Roohi, A., Khademolhosseini, H., Sheikhfaal, S., Angizi, S., Navi, K., DeMara, R.F.: Towards ultra-efficient QCA reversible circuits. Microprocess. Microsyst. 49, 127–138 (2017). CrossRefGoogle Scholar
  15. 15.
    Farazkish, R., Azghadi, M.R., Navi, K., Haghparast, M.: New method for decreasing the number of quantum dot cells in QCA circuits. World Appl. Sci. J. 4(6), 793–802 (2008)Google Scholar
  16. 16.
    Berarzadeh, M., Mohammadyan, S., Navi, K., Bagherzadeh, N.: A novel low power exclusive-OR via cell level-based design function in quantum cellular automata. J. Comput. Electron. 16(3), 875–882 (2017). CrossRefGoogle Scholar
  17. 17.
    Momenzadeh, M., Huang, J., Tahoori, M.B., Lombardi, F.: Characterization, test, and logic synthesis of and-or-inverter (AOI) gate design for QCA implementation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24(12), 1881–1892 (2005). CrossRefGoogle Scholar
  18. 18.
    Zhang, R., Walus, K., Wang, W., Jullien, G.A.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 443–450 (2004). ADSCrossRefGoogle Scholar
  19. 19.
    Zhang, R., Gupta, P., Jha, N.K.: Majority and minority network synthesis with application to QCA-, SET-, and TPL-based nanotechnologies. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(7), 1233–1245 (2007). CrossRefGoogle Scholar
  20. 20.
    Kong, K., Shang, Y., Lu, R.: An optimized majority logic synthesis methodology for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 9(2), 170–183 (2010). ADSCrossRefGoogle Scholar
  21. 21.
    Wang, P., Niamat, M.Y., Vemuru, S.R., Alam, M., Killian, T.: Synthesis of majority/minority logic networks. IEEE Trans. Nanotechnol. 14(3), 473–483 (2015). ADSCrossRefGoogle Scholar
  22. 22.
    Soeken, M., Amaru, L.G., Gaillardon, P.E., De Micheli, G.: Exact synthesis of majority-inverter graphs and its applications. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(11), 1842–1855 (2017). CrossRefGoogle Scholar
  23. 23.
    Abedi, D., Jaberipur, G.: Decimal full adders specially designed for quantum-dot cellular automata. IEEE Trans. Circuits Syst. II Express Briefs. 65(1), 106–110 (2018). CrossRefGoogle Scholar
  24. 24.
    Perri, S., Corsonello, P., Cocorullo, G.: Area-delay efficient binary adders in QCA. IEEE Trans. Very Large Scale Integr. VLSI Syst. 22(5), 1174–1179 (2014). CrossRefGoogle Scholar
  25. 25.
    Kianpour, M., Sabbaghi-Nadooshan, R.: A novel quantum-dot cellular automata X-bit × 32-bit SRAM. IEEE Trans. Very Large Scale Integr. VLSI Syst. 24(3), 827–836 (2016). CrossRefzbMATHGoogle Scholar
  26. 26.
    Taskin, B., Hong, B.: Improving line-based QCA memory cell design through dual phase clocking. IEEE Trans. Very Large Scale Integr. VLSI Syst. 16(12), 1648–1656 (2008). CrossRefGoogle Scholar
  27. 27.
    Mustafa, M., Beigh, M.R.: Design and implementation of quantum cellular automata based novel parity generator and checker circuits with minimum complexity and cell count. Indian J. Pure Appl. Phys. 51(1), 60–66 (2013). CrossRefGoogle Scholar
  28. 28.
    Kianpour, M., Sabbaghi-Nadooshan, R., Navi, K.: A novel design of 8-bit adder/subtractor by quantum-dot cellular automata. J. Comput. Syst. Sci. 80(7), 1404–1414 (2014). MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Khosroshahy, M.B., Moaiyeri, M.H., Angizi, S., Bagherzadeh, N., Navi, K.: Quantum-dot cellular automata circuits with reduced external fixed inputs. Microprocess. Microsyst. 50, 154–163 (2017). CrossRefGoogle Scholar
  30. 30.
    Singh, G., Sarin, R.K., Raj, B.: A novel robust exclusive-OR function implementation in QCA nanotechnology with energy dissipation analysis. J. Comput. Electron. 15(2), 455–465 (2016). CrossRefGoogle Scholar
  31. 31.
    Angizi, S., Alkaldy, E., Bagherzadeh, N., Navi, K.: Novel robust single layer wire crossing approach for exclusive OR sum of products logic design with quantum-dot cellular automata. J. Low Power Electron. 10(2), 259–271 (2014). CrossRefGoogle Scholar
  32. 32.
    Sasamal, T.N., Ghanekar, U., Singh, A.K.: Design and analysis of ultra-low power QCA parity generator circuit. In: Garg, A., Bhoi, A., Sanjeevikumar, P., Kamani, K. (eds.) Lecture Notes in Electrical Engineering, vol. 436, pp. 347–354. Springer, Singapore (2018)Google Scholar
  33. 33.
    Sheikhfaal, S., Angizi, S., Sarmadi, S., Moaiyeri, M.H., Sayedsalehi, S.: Designing efficient QCA logical circuits with power dissipation analysis. Microelectron. J. 46(6), 462–471 (2015). CrossRefGoogle Scholar
  34. 34.
    Mohammadi, H., Navi, K.: Energy-efficient single-layer QCA logical circuits based on a novel XOR gate. J. Circuits Syst. Comput. (2018). CrossRefGoogle Scholar
  35. 35.
    Poorhosseini, M., Hejazi, A.R.: A fault-tolerant and efficient XOR structure for modular design of complex QCA circuits. J. Circuits Syst. Comput. 27(7), 1–24 (2017). CrossRefGoogle Scholar
  36. 36.
    Chaudhary, A., Chen, D.Z., Hu, X.S., Whitton, K., Niemier, M., Ravichandran, R.: Eliminating wire crossings for molecular quantum-dot cellular automata implementation. In: ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005, San Jose, 6–10 Nov. 2005, pp. 565–571. IEEEGoogle Scholar
  37. 37.
    Chung, W.J., Smith, B., Lim, S.K.: QCA physical design with crossing minimization. In: 5th IEEE conference on nanotechnology, 2005, Nagoya, 15–15 July 2005, pp. 108–111. IEEEGoogle Scholar
  38. 38.
    Smith, B.S., Lim, S.K.: QCA channel routing with wire crossing minimization. In: 2005 ACM Great Lakes symposium on VLSI, GLSVLSI'05, Chicago, IL, United states, April 17–19, 2005 2005. Proceedings of the ACM Great Lakes Symposium on VLSI, GLSVLSI, pp. 217–220. Association for Computing MachineryGoogle Scholar
  39. 39.
    Krishnaswamy, S., Viamontes, G.F., Markov, I.L., Hayes, J.P.: Probabilistic transfer matrices in symbolic reliability analysis of logic circuits. ACM Trans. Des. Autom. Electron. Syst. 13(1), 1–8 (2008). CrossRefGoogle Scholar
  40. 40.
    Srivastava, S., Sarkar, S., Bhanja, S.: Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans. Nanotechnol. 8(1), 116–127 (2009). ADSCrossRefGoogle Scholar
  41. 41.
    Liu, W., Lu, L., Oneill, M., Swartzlander, E.E.: A first step toward cost functions for quantum-dot cellular automata designs. IEEE Trans. Nanotechnol. 13(3), 476–487 (2014). ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yongqiang Zhang
    • 1
  • Feifei Deng
    • 1
  • Xin Cheng
    • 1
  • Guangjun Xie
    • 1
    Email author
  1. 1.School of Electronic Science and Applied PhysicsHefei University of TechnologyHefeiChina

Personalised recommendations