Advertisement

Quantum Voting Scheme Based on Locally Indistinguishable Orthogonal Product States

  • Dong-Huan Jiang
  • Juan Wang
  • Xiang-Qian Liang
  • Guang-Bao XuEmail author
  • Hong-Feng Qi
Article

Abstract

We propose a quantum voting scheme based on locally indistinguishable orthogonal product states. In this scheme, voting information is encoded as a sequence of orthogonal product states. Different particles of a same orthogonal product state are transmitted separately, which can ensure the security of the message since these orthogonal product states come from a set that cannot be perfectly distinguished by local operations and classical communication (LOCC). Even if an attacker obtains these particles, no effective information can be obtained. Compared with entangled states, orthogonal product states are more convenient and cheaper to prepare. Security analysis and efficiency analysis show that our scheme can resist known quantum attacks and has high efficiency.

Keywords

Quantum voting scheme Orthogonal product states Local operations and classical communication 

Notes

Acknowledgements

This work is supported by Shandong Provincial Natural Science Foundation (No. ZR2019MF023) and SDUST Research Fund.

References

  1. 1.
    Jan, J.K., Tai, C.C.: A secure electronic voting protocol with IC cards. J. Syst. Software. 39(12), 93–101 (1997)CrossRefGoogle Scholar
  2. 2.
    Ku, W., Wang, S.D.: A secure and practical electronic voting scheme. Comput. Commun. 22(3), 279–286 (1999)CrossRefGoogle Scholar
  3. 3.
    Mosayeb, N., Gong, L.H., Monireh, N., Laleh, F.M.: An anonymous surveying protocol via GreenbergerHorne-Zeilinger states. Int. J. Theor. Phys. 55(10), 4436–4444 (2016)zbMATHCrossRefGoogle Scholar
  4. 4.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. Twenty-Eighth ACM Symposium on Theory of Computing, 212–219 (1996)Google Scholar
  6. 6.
    Hillery, M.: Quantum voting and privacy ptotection: first steps. Int. Soc. Opt. Eng., 2006 (2006)Google Scholar
  7. 7.
    Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Tian, J.H., Zhang, J.Z., Li, Y.P.: A quantum multi-proxy blind signature scheme based on genuine four-qubit entangled state. Int. J. Theor. Phys. 55(2), 809–816 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Wen, X.J., Cai, X.J.: Secure quantum voting protocol. J. Shandong Univ. (Natural Science) 46(9), 9–13 (2011)MathSciNetGoogle Scholar
  10. 10.
    Yi, Z., He, G.Q., Zeng, G.H.: Quantum voting protocol using two-mode squeezed states. Acta Phys. Sin. 58(5), 3166–3172 (2009)Google Scholar
  11. 11.
    Horoshko, D., Kilin, S.: Quantum anonymous voting with anonymity check. Phys. Lett. A 375, 1172–1175 (2011)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Yu, S.X., Oh, C.H.: Detecting the local indistinguishability of maximally entangled states. arXiv:1502.01274v1 [quant-ph] (2015)
  13. 13.
    Xu, G.B., Wen, Q.Y., Qin, S.J., Yang, Y.H., Gao, F.: Quantum nonlocality of multipartite orthogonal product states. Phys. Rev. A 93(3), 032341 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Wang, Y.L., Li, M.S., Zheng, Z.J., Fei, S.M.: Nonlocality of orthogonal product-basis quantum states. Phys. Rev. A 92, 032313 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Xu, G.B., Yang, Y.H., Wen, Q.Y., Qin, S.J., Gao, F.: Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system. Sci. Rep. 6, 31048 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Zhang, Z.C., Gao, F., Cao, Y., Qin, S.J., Wen, Q.Y.: Local indistinguishability of orthogonal product states. Phys. Rev. A 93, 012314 (2016)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J., Zuo, H.J.: Local indistinguishability of multipartite orthogonal product bases. Quantum Inf. Process. 16, 276 (2017)ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Wang, T.Y., Wen, Q.Y., Chen, X.B.: Cryptanalysis and improvement of a multi-user quantum key distribution protocol. Opt. Commun. 283(24), 5261–5263 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Chen, X.B., et al.: Cryptanalysis of secret sharing with a single d-level quantum system. Quantum Inf. Process. 17, 225 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Tian, J.H., Zhang, J.Z., Li, Y.P.: A voting protocol based on the controlled quantum operation teleportation. Int. J. Theor. Phys. 55(5), 2303–2310 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Xia, Z.H., Wang, X.H., Sun, X.M., et al.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27(2), 340–352 (2016)CrossRefGoogle Scholar
  22. 22.
    Xia, Z.H., Wang, X.H., Zhang, L.G., et al.: A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans. Inf. Forensics Secur. 11(11), 2594–2608 (2016)CrossRefGoogle Scholar
  23. 23.
    Wang, T.Y., Li, Y.P., Zhang, R.L.: Analysis of counterfactual quantum certificate authorization. Int. J. Theor. Phys. 55(12), 5331–5335 (2016)zbMATHCrossRefGoogle Scholar
  24. 24.
    Cao, H.J., Ding, L.Y., Yu, Y.F., et al.: A electronic voting scheme achieved by using quantum proxy signature. Int. J. Theor. Phys. 55(9), 4081–4088 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Cao, H.J., Ding, L.Y., Jiang, X.L., Li, P.F.: A new proxy electronic voting scheme achieved by six-particle entangled states. Int. J. Theor. Phys. 57(3), 674–681 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Zhang, J.L., Xie, S.C., Zhang, J.Z.: An elaborate secure quantum voting scheme. Int. J. Theor. Phys. 56(10), 3019–3028 (2017)ADSzbMATHCrossRefGoogle Scholar
  27. 27.
    Jiang, D.H., Xu, G.B.: Multiparty quantum key agreement protocol based on locally indistinguishable orthogonal product staes. Quantum Inf. Process. 17, 180 (2018)ADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Jiang, D.H., Wang, X.J., Xu, G.B., Lin, J.Q.: A denoising-decomposition model combining TV minimisation and fractional derivatives. East Asia. J. Appl. Math. 8, 447–462 (2018)CrossRefGoogle Scholar
  29. 29.
    Liu, H.N., Liang, X.Q., Jiang, D.H., Zhang, Y.H., Xu, G.B.: Multi-party quantum key agreement protocol with bell states and single particles. Int. J. Theor. Phys. 58(5), 1659–1666 (2019)zbMATHCrossRefGoogle Scholar
  30. 30.
    Jiang, D.H., Hu, Q.Z., Liang, X.Q., Xu, G.B.: A novel quantum multi-signature protocol based on locally indistinguishable orthogonal product states. Quantum Inf. Process. 18, 268 (2019)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Jiang, D.H., Xu, Y.L., Xu, G.B.: Arbitrary quantum signature based on local indistinguishability of orthogonal product states. Int. J. Theor. Phys. 58(3), 1036–1045 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Fan, Y.J., Huang, X., Wang, Z., Xia, J.W., Li, Y.X.: Global Mittag-Leffler synchronization of delayed fractional-order memristive neural networks. Advances in Difference Equations, 338 (2018)Google Scholar
  33. 33.
    Zhu, J.G., Hao, B.B.: A new smoothing method for solving nonlinear complementarity problems. Open Math. 17, 104–119 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Liang, X.Q., Wu, Y.L., Zhang, Y.H., Wang, S.S., Xu, G.B.: Quantum multi-proxy blind signature scheme based on four-qubit cluster states. Int. J. Theor. Phys. 58(1), 31–39 (2019)zbMATHCrossRefGoogle Scholar
  35. 35.
    Cui, Y.J., Ma, W.J., Sun, Q., Sun, X.W.: New uniqueness results for boundary value problem of fractional differential equation. Nonlinear Anal-Model 23 (1), 31–39 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Liu, F., Zhang, K.J., Cao, T.Q.: Security weaknesses in arbitrated quantum signature protocols. Int. J. of Theor. Phys. 53(1), 277–288 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Lin, S., Guo, G.D., Huang, F., Liu, X.F.: Quantum anonymous ranking based on the Chinese remainder theorem. Phys. Rev. A 93(1), 012318 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    Zhang, J.L., Hu, M.S., Jia, Z.J., Wang, L.P.: A novel E-payment protocol implented by blockchain and quantum signature. Int. J. Theor. Phys. 58, 1315–1325 (2019)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Mathematics and Systems ScienceShandong University of Science and TechnologyQingdaoChina
  2. 2.CRRC Academy Co., Ltd.BeijingChina

Personalised recommendations