Advertisement

Improving Continuous-Variable Quantum Key Distribution in a Turbulent Atmospheric Channel via Photon Subtraction

  • Qingquan Peng
  • Qin LiaoEmail author
  • Ying Guo
Article

Abstract

The transmission performance of continuous-variable quantum key distribution (CVQKD) in turbulent atmospheric channel is lower than CVQKD in fiber channel due to the large loss of quantum entanglement in turbulent atmospheric channel. In this paper, we propose a new approach to prolong the transmission performance of CVQKD in a turbulent atmospheric channel by using photon subtraction operation since the proposed approach can effectively enhance the entangled state between quantum. Simulation analysis shows that photon subtraction operation can effectively improve the security key rate of continuous-variable quantum key distribution, and the optimal performance can be achieved when only one photon is subtracted.

Keywords

Continuous variable quantum key distribution Photon subtraction operation A turbulent atmospheric channel 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61572529, 61871407, 61872390, 61801522), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 18KJB510045).

References

  1. 1.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    Bang, J.Y., Berger, M.S.: Quantum mechanics and the generalized uncertainty principle. Phys. Rev. D 74(12), 125012 (2006)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Gabay, M., Arnon, S.: Quantum key distribution by a free-space mimo system. J. Lightwave Tech. 24(8), 3114–3120 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Djordjevi, I.B.: Integrated optics modules based proposal for quantum information processing, teleportation, qkd, and quantum error correction employing photon angular momentum. IEEE Photonics J. 8(1), 1–12 (2016)CrossRefGoogle Scholar
  7. 7.
    Xiao, H., Zhang, Z.: Subcarrier multiplexing multiple-input multiple-output quantum key distribution scheme with orthogonal quantum states. Quantum Inf. Process. 16(1), 13 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Ömer, B.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3(7), 481 (2007)CrossRefGoogle Scholar
  9. 9.
    Buttler, W.T., Hughes, R.J., Lamoreaux, S.K., Morgan, G.L., Nordholt, J.E., Peterson, C.G.: Daylight quantum key distribution over 1.6 km. Phys. Rev. Lett. 84(24), 5652 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Hughes, R.J., Nordholt, J.E., Derkacs, D., Peterson, C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New. J. Phys. 4(1), 43 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Schmitt-Manderbach, T., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98(1), 010504 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Fedrizzi, A., Ursin, R., Herbst, T., Nespoli, M., Prevedel, R., Scheidl, T., Tiefenbacher, F., Jennewein, T., Zeilinger, A.: High-fidelity transmission of entanglement over a high-loss free-space channel. Nat. Phys. 5(6), 389 (2009)CrossRefGoogle Scholar
  13. 13.
    Yin, J., Ren, J.G., Lu, H., Cao, Y., Yong, H.L., Wu, Y.P., Liu, C., Liao, S.K., Zhou, F., Jiang, Y., Cai, X.D.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature (London) 488(7410), 185 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Nauerth, S., Moll, F., Rau, M., Fuchs, C., Horwath, J., Frick, S., Weinfurter, H.: Air-to-ground quantum communication. Nat. Photonics 7(5), 382 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Rarity, J.G., Tapster, P.R., Gorman, P.M., Knight, P.: Ground to satellite secure key exchange using quantum cryptography. New J. Phys. 4(1), 82 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Aspelmeyer, M., Jennewein, T., Pfennigbauer, M., Leeb, W.R., Zeilinger, A.: Long-distance quantum communication with entangled photons using satellites. IEEE J. Sel. Quantum Electron. 9(6), 1541–1551 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Villoresi, P., Jennewein, T., Tamburini, F., Aspelmeyer, M., Bonato, C., Ursi, R., Pernechele, C., Luceri, V., Bianco, G., Zeilinger, A., Barbieri, C.: Experimental verification of the feasibility of a quantum channel between space and earth. New J. Phys. 10(3), 033038 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Armengol, J.M.P., Furch, B., de Matos, C.J., Minster, O., Cacciapuoti, L., Pfennigbauer, M., Aspelmeyer, M., Jennewein, T., Ursin, R., Schmitt-Manderbach, T., Baister, G.: Quantum communications at esa: towards a space experiment on the iss. Acta Astronaut. 63(1-4), 165–178 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Bonato, C., Tomaello, A., Da Deppo, V., Naletto, G., Villoresi, P.: Feasibility of satellite quantum key distribution. New J. Phys. 11(4), 045017 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Meyer-Scott, E., Yan, Z., MacDonald, A., Bourgoin, J.P., Hübel, H., Jennewein, T.: How to implement decoy-state quantum key distribution for a satellite uplink with 50-db channel loss. Phys. Rev. A 84(6), 062326 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Semenov, A.A., Vogel, W.: Quantum light in the turbulent atmosphere. Phys. Rev. A 80(2), 021802 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Erven, C., Heim, B., Meyer-Scott, E., Bourgoin, J.P., Laflamme, R., Weihs, G., Jennewein, T.: Studying free-space transmission statistics and improving free-space quantum key distribution in the turbulent atmosphere. New J. Phys. 14(12), 123018 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Capraro, I., Tomaello, A., Dall’Arche, A., Gerlin, F., Ursin, R., Vallone, G., Villoresi, P.: Impact of turbulence in long range quantum and classical communications. Phys. Rev. Lett 109(20), 200502 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Guo, Y., Xie, C., Huang, P., Li, J., Zhang, L., Huang, D.: Entanglement-distillation attack on continuous-variable quantum key distribution in a turbulent atmospheric channel. Phys. Rev. A 96(2), 022320 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Guo, Xie, C., Huang, P., Li, J., Zhang, L., Huang, D., Zeng, G.: Channel-parameter estimation for satellite-to-submarine continuous-variable quantum key distribution . Phys. Rev. A 97(5), 052326 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    Zhao, Y., Fung, C.H.F., Qi, B., Chen, C., Lo, H.K.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78(4), 042333 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4(10), 686 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Kim, M.S., Park, E., Knight, P.L., Jeong, H.: Nonclassicality of a photon-subtracted gaussian field. Phys. Rev. A 71(4), 043805 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Kitagawa, A., Takeoka, M., Sasaki, M., Chefles, A.: Entanglement evaluation of non-gaussian states generated by photon subtraction from squeezed states. Phys. Rev. A 73(4), 042310 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Navarrete-Benlloch, C., García-Patrón, R., Raúl, Shapiro, J.H., Cerf, Nicolas, J.: Enhancing quantum entanglement by photon addition and subtraction. Phys. Rev. A 86(1), 012328 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Opatrnỳ, T., Kurizki, G., Welsch, D.G.: Improvement on teleportation of continuous variables by photon subtraction via conditional measurement. Phys. Rev. A 61(3), 032302 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    Zunino, L., Gulich, D., Funes, G., Pérez, D.G.: Turbulence-induced persistence in laser beam wandering. Opt. Lett. 40(13), 3145–3148 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Berman, G.P., Chumak, A.A., Gorshkov, V.N.: Beam wandering in the atmosphere: the effect of partial coherence. Phys. Rev. E 76(5), 056606 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    Madsen, L.S., Usenko, V.C., Lassen, M., Filip, R., Andersen, U.L.: Continuous variable quantum key distribution with modulated entangled states. Nat. Commun. 3, 1083 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Franzen, A., Hage, B., DiGuglielmo, J., Fiurasek, J., Schnabel, R.: Experimental demonstration of continuous variable purification of squeezed states. Phys. Rev. Lett. 97(15), 150505 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    Gottesman, D., Preskill, J.: Secure quantum key distribution using squeezed states. In: Quantum Information with Continuous Variables, vol. 63, pp. 022309. Springer (2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of AutomationCentral South UniversityChangshaChina
  2. 2.College of Computer Science and Electronic EngineeringHunan UniversityChangshaChina
  3. 3.Jiangsu Key Construction Laboratory of IoT Application TechnologyWuxi Taihu UniversityWuxiChina

Personalised recommendations