Quantum Codes Derived from One-Generator Quasi-Cyclic Codes with Hermitian Inner Product

  • Jingjie Lv
  • Ruihu LiEmail author
  • Junli Wang


In this paper, we consider a family of one-generator quasi-cyclic codes and their applications in quantum codes construction. We give a sufficient condition for self-orthogonality with respect to Hermitian inner product. By virtue of the well-known MacWilliams equations, some binary and ternary stabilizer quantum codes with good parameters are constructed. Furthermore, we present a lower bound on the Hermitian dual distance of these involved codes. As the computational results, some good stabilizer quantum codes over small finite fields are obtained.


Quantum codes Quasi-cyclic codes Hermitian inner product 



This work is supported by National Natural Science Foundation of China (Nos.11471011, 11801564) and Natural Science Foundation of Shaanxi (No.2017JQ1032).


  1. 1.
    Aydin, N., Ray-Chaudhuri, D.K.: Quasi-cyclic codes over \(\mathbb {Z}_{4}\) and some new binary codes. IEEE Trans. Inf. Theory 48, 2065–2069 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bosma, W., Cannon, J., Playoust, C.: The MAGMA algebra system I: The user language. J. Symb. Comput. 24, 235–265 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Daskalov, R., Hristov, P.: New binary one-generator quasi-cyclic codes. IEEE Trans. Inf. Theory 49, 3001–3005 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Edel, Y.: Table of quantum twisted codes. Electronic address: (Accessed 7 July 2019)
  7. 7.
    Feng, K., Cheng, H.: Quantum Error-Correcting Codes. Science Press, Beijing (2010)Google Scholar
  8. 8.
    Feng, K., Ma, Z.: A finite GilbertCVarshamov bound for pure stabilizer quantum codes. IEEE Trans. Inf. Theory 50, 3323–3325 (2004)CrossRefGoogle Scholar
  9. 9.
    Fossorier, M.P.C.: Quasi-cyclic low-density parity-check codes from circulant permutation matrices. IEEE Trans. Inf. Theory 50, 1788–1793 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Galindo, C., Hernando, F., Mastsumoto, R.: Quasi-cyclic constructions of quantum. Finite Fields Appl. 52, 261–280 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gao, J.: Some results on linear codes over \(\mathbb {F}_{p}+u\mathbb {F}_{p}+u^{2}\mathbb {F}_{p}\). J. Appl. Math. Comput. 47(1-2), 473–485 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gao, J.: Quantum codes from cyclic codes over \(\mathbb {F}_{q}+v\mathbb {F}_{q}+v^{2}\mathbb {F}_{q}+v^{3}\mathbb {F}_{q}\). Int. J. Quantum Inf. 13(8), 757–766 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Gao, J., Wang, Y.K.: Quantum codes derived from negacyclic codes. Int. J. Theor. Phys., (2017)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. Thesis. California Institute of Technology (1977)Google Scholar
  15. 15.
    Grassl, M.: Codetables. electronic address: (Accessed 7 July 2019)
  16. 16.
    Hagiwara, M., Kasai, K., Imai, H., Sakaniwa, K.: Spatially-coupled quasi-cyclic quantum LDPC codes. In: Proc. 2011 IEEE ISIT, pp. 638–642. Nice (2007)Google Scholar
  17. 17.
    Kai, X., Zhu, S., Tang, Y.: Quantum negacyclic codes. Phys. Rev. A 88 (1), 012326(1-5) (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Kasami, T.: A Gilber-Vashamov bound for quasi-cyclic codes of rate \(\frac {1}{2}\). IEEE Trans. Inf. Theory 20, 679 (2008)CrossRefGoogle Scholar
  19. 19.
    Ketkar, A., Klappenecker, A., Kumar, S.: Nonbinary stabilizier codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4914 (2006)CrossRefGoogle Scholar
  20. 20.
    La Guardia, G.G.: Quantum codes derived from cyclic codes. Int. J. Theor. Phys., (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Lally, K., Fitzpatrick, P.: Algebraic structure of quasicyclic codes. Discret. Appl. Math. 11, 157–175 (2001)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ling, S., Luo, J., Xing, C.: Generalization of Stean’s enlargement construction of quantun codes and applications. IEEE Trans. Inf. Theory 56, 4080–4084 (2008)CrossRefGoogle Scholar
  23. 23.
    Ling, S., Solé, P.: Good self-dual qausi-cyclic codes exist. IEEE Trans. Inf. Theory 49, 1052–1053 (2003)CrossRefGoogle Scholar
  24. 24.
    Ma, F.H., Gao, J., Fu, F.W.: Constacyclic codes over the ring \({\mathbb F}_{q}+v{\mathbb F}_{q}+v^{2}{\mathbb F}_{q}\) and their applications of constructing new non-binary quantum codes. Quantum Inf. Process. 17(6), 1–19 (2018)CrossRefGoogle Scholar
  25. 25.
    MacWilliams, F.J., Sloane, N.J.A.: The theory of error correcting codes. Amsterdam, The Netherlands: North-Holland. Math. Library, 16 (1996)Google Scholar
  26. 26.
    Qian, J., Ma, W., Gou, W.: Quantum codes from cyclic codes over finite ring. Int. J. Quantum Inf. 7(6), 1277–1283 (2009)CrossRefGoogle Scholar
  27. 27.
    Qian, J., Ma, W., Wang, X.: Quantum error-correcting codes from quasi-cyclic codes. Int. J. Quantum Inf. 6(6), 1263–1269 (2008)CrossRefGoogle Scholar
  28. 28.
    Qian, J., Zhang, L.: Improved constructions for nonbinary quantum BCH codes. Int. J. Theor. Phys., (2017)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Séguin, G.E., Drolet, G.: The Theory of 1-Generator Quasi-Cyclic Codes. Technical Reports, Department of Electrical and Computer Engineering, Royal Military College, Kingston (1990)Google Scholar
  30. 30.
    Séguin, G.E.: A class of 1-generator quasi-cyclic codes. IEEE Trans. Inf. Theory 50, 1745–1753 (2004)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Shor, P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A 52(4), 2493–2496 (1995)ADSCrossRefGoogle Scholar
  32. 32.
    Siap, I., Aydin, N., Ray-Chaudhuri, D.K.: New ternary quasi-cyclic codes with better minimum distances. IEEE Trans. Inf. Theory 46, 1554–1558 (2000)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Steane, A.: Multiple-particle interference and quantum error correction. Proc. R. Soc. A Math. Phys. Eng. Sci. 452(1954), 2551–2577 (1996)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Tanner, R.M.: Towards algebraic theory of Turbo codes. In: Proceedings of 2nd International Symposium on Turbo codes, pp. 17–26. Brest (2000)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Basic SciencesAir Force Engineering UniversityXi’anPeople’s Republic of China

Personalised recommendations