International Journal of Theoretical Physics

, Volume 59, Issue 1, pp 274–291 | Cite as

On Extension of Joint Distribution Functions on Quantum Logics

  • Ol’ga NánásiováEmail author
  • Jarosław Pykacz
  • L’ubica Valášková
  • Karla Čipková


The problem of extension of joint distribution functions (s-maps) on quantum logics is studied. Necessary and sufficient conditions for the extension of bivariate s-maps to trivariate s-maps are given. However, it is shown that these conditions are not sufficient for extending trivariate s-maps to 4-variate s-maps.


Quantum logic Quantum probability Joint distribution S-map State 



O. N. and K. Č. thank for the support of the VEGA grant no. 1/0159/17, L’. V. thanks for the support of the VEGA grant no. 1/0420/15, and J. P. thanks Polish National Agency for Academic Exchange for the support which allowed him to visit Slovak Technical University in Bratislava, no. PPN/BIL/2018/1/87/SVK/UMOWA/1.


  1. 1.
    Al-Adilee, A. M.: A note to a common cause in quantum logic. Slovak Journal of Civil Engineering XVIII(4), 24–29 (2010). CrossRefGoogle Scholar
  2. 2.
    Al-Adilee, A. M., Nánásiová, O.: Copula and s-map on a quantum logic, vol. 179. (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Annals Math. 37, 823–843 (1936). MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bohdalová, M., Kalina, M., Nánásiová, O.: Granger causality from a different viewpoint. Informační, bulletin České statistické společnosti 27(2), 23–28 (2016)Google Scholar
  5. 5.
    Dvurečenskij, A., Pulmannová, S.: Connection between joint distribution and compatibility. Reports on Mathematical Physics 19, 349–359 (1984). ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Dvurečenskij, A., Pulmannová, S.: New trends in quantum structures. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava (2000)CrossRefGoogle Scholar
  7. 7.
    Garg, A., Mermin, N. D., Farkas’s, Lemma: the nature of reality statistical implications of quantum correlations. Foundation of Physsics 14(1), 1–39 (1984). ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Garola, C.: An epistemic interpretation of quantum probability via contextuality. Foundations of Science. (2018)
  9. 9.
    Greechie, R.J.: Orthomodular lattices admitting no states. Journal of Combinatorial Theory Series A 10, 119–132 (1971). MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gleason, A.: Measures on the closed subspaces of a Hilbert space. Indiana Univ. Math. J. 6(4), 885–893 (1957). MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gudder, S.: Joint distributions of observables. J. Math. Mech. 18, 325–335 (1968)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Kalmbach, G.: Orthomodular lattices. Academic Press, London (1983)zbMATHGoogle Scholar
  13. 13.
    Khrennikov, A., Basieva, I.: Possibility to agree on disagree from quantum information and decision making. J. Math. Psychol. 62(3), 1–5 (2014). MathSciNetCrossRefGoogle Scholar
  14. 14.
    Khrennikov, A.: CHSH inequality: quantum probabilities as classical conditional probabilities. Foundation of Physics 45, 711–725 (2015). ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Khrennikov, A., Alodjants, A.: Classical (local and contextual) probability model for Bohm-Bell type experiments: no-signaling as independence of random variables. Entropy 21(2), 157 (2019). ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Malvestuto, F.M.: Existence of extensions and product extensions for discrete probability distributions. Discret. Math. 69, 61–77 (1988). MathSciNetCrossRefGoogle Scholar
  17. 17.
    Nánásiová, O.: Map for simultaneous measurements for a quantum logic. Int. J. Theor. Phys. 42, 1889–1903 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Nánásiová, O.: Principle conditioning. Int. J. Theor. Phys. 43, 1383–1395 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Nánásiová, O., Kalina, M.: Calculus for non-compatible observables, construction through conditional states. Int. J. Theor. Phys. 54, 506–518 (2014). MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Nánásiová, O., Khrennikov, A.: Representation theorem of observables on a quantum system. Int. J. Theor. Phys. 45, 469–482 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Nánásiová, O., Khrennikov, A.: Compatibility and marginality. Int. J. Theor. Phys. 46, 1083–1095 (2007)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Nánásiová, O., Pulmannová, S.: S-map and tracial states. Inf. Sci. 179, 515–520 (2009). MathSciNetCrossRefGoogle Scholar
  23. 23.
    Nánásiová, O., Valášková, L.: Maps on a quantum logic. Soft. Comput. 14, 1047–1052 (2010). CrossRefGoogle Scholar
  24. 24.
    Nánásiová, O., Valášková, L.: Marginality and triangle inequality. Int. J. Theor. Phys. 49(12), 3199–3208 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Nánásiová, O., Valášková, L., Čerňanová, V.: Probability measures and projections on quantum logics. In: Kulczycki, P., et al. (eds.) ITSRCP 2018. Advances in intelligent systems and computing, 945. Springer, Cham (2020)Google Scholar
  26. 26.
    Nielsen, R.B.: An introduction to copulas. Springer, New York (1999)CrossRefGoogle Scholar
  27. 27.
    Pavičić, M.: Exhaustive generation of orthomodular lattices with exactly one nonquantum state. Reports on Mathematical Physics 64, 417–428 (2009). ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Pták, P., Pulmannová, S.: Orthomodular structures as quantum logics. Kluwer, Dortrecht and Veda, Bratislava (1991)zbMATHGoogle Scholar
  29. 29.
    Pulmannová, S.: Relative compatibility and joint distributions of observables. Foundation of Physics 10, 641–653 (1980)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Pykacz, J., Fra̧ckiewicz, P: The problem of conjunction and disjunction in quantum logics. Int. J. Theor. Phys. 56(12), 3963–3970 (2017). MathSciNetCrossRefGoogle Scholar
  31. 31.
    Pykacz, J., Valášková, L., Nánásiová, O.: Bell-type inequalities for bivariate maps on orthomodular lattices. Foundation of Physics 45, 900–913 (2015). ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Sozzo, S.: Conjunction and negation of natural concepts: A quantum-theoretic modeling. J. Math. Psychol. 66, 83–102 (2015). MathSciNetCrossRefGoogle Scholar
  33. 33.
    Svozil, K.: Faithful orthogonal representations of graphs from partition logics. arXiv:1810.10423
  34. 34.
    Vlach, M.: Conditions for the existence of solutions of the three-dimensional planar transportation problem. Discrete Appplied Mathematics 13, 61–78 (1986). MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ol’ga Nánásiová
    • 1
    Email author
  • Jarosław Pykacz
    • 2
  • L’ubica Valášková
    • 3
  • Karla Čipková
    • 1
  1. 1.Institute of Computer Science and Mathematics, Faculty of Electrical Engineering and Information TechnologySlovak University of Technology in BratislavaBratislavaSlovakia
  2. 2.Institute of MathematicsUniversity of GdańskGdańskPoland
  3. 3.Department of Mathematics and Descriptive Geometry, Faculty of Civil EngineeringSlovak University of Technology in BratislavaBratislavaSlovakia

Personalised recommendations