International Journal of Theoretical Physics

, Volume 59, Issue 1, pp 236–249 | Cite as

A novel quantum identity authentication based on Bell states

  • Shun Zhang
  • Zhang-Kai Chen
  • Run-Hua ShiEmail author
  • Feng-Yu Liang


In this paper, we present a novel quantum authentication protocol based on entanglement swapping of Bell states, in which it can ensure two users to simultaneously authenticate each other. With the help of a semi-honest third party, our protocol can realize mutual identity authentication by utilizing Bell states and applying Pauli operators. In addition, this protocol can prevent the third party from knowing the secret key shared in prior between the two users. Finally, the analysis results show that this protocol is secure and efficient.


Identity authentication quantum cryptography quantum communication Bell state 



This work was supported by National Natural Science Foundation of China (No.61772001) and Natural Science Foundation for the Higher Education Institutions of Anhui Province of China (KJ2018A0017).


  1. 1.
    Bennett, C.H., Brassard, G.: An update on quantum cryptography. Springer-Verlag. pp. 475-480 (1984)Google Scholar
  2. 2.
    Ekert, A.K.: Quantum cryptography based on Bell's theorem. Phys. Rev. Lett. 67, 661–663 (1991)ADSMathSciNetzbMATHGoogle Scholar
  3. 3.
    Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell's theorem. Phys. Rev. Lett. 68(5), 557 (1992)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Hillery, M., Bužek, V., Berthiaume, A.: Quantum Secret Sharing. Phys. Rev. A59, 1829 (1999)Google Scholar
  5. 5.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A. 59, 162 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Yang, Y.G., Wen, Q.Y.: Threshold quantum secret sharing between multi-party and multi-party. Sci. China, Ser. G. 51(9), 1308–1315 (2008)CrossRefGoogle Scholar
  7. 7.
    Yan, F.L., Zhang, X.Q.: A scheme for secure direct communication using EPR pairs and teleportation. The European Physical Journal B - Condensed Matter and Complex Systems. 41(1), 75–78 (2004)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Man, Z.X., Zhang, Z.J., Li, Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operators. Chin. Phys. Lett. 22(1), 18–21 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Xia, Y., Song, J., Song, H.S.: Quantum dialogue using non-maximally entangled states based on entanglement swapping. Phys. Scr. 76(4), 363 (2007)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Xia, Y., Song, J., Song, H.S., Guo, J.L.: Multiparty remote state preparation with linear optical elements. International Journal of Quantum Information. 06(05), 1127–1134 (2008)CrossRefGoogle Scholar
  11. 11.
    Chen, Z.N., Qin, Z., Wang, X.H.: A quasi quantum secure direct communication protocol with authentication. IEEE International Conference on Computer Science & Information Technology. IEEE. pp. 48-52 (2010)Google Scholar
  12. 12.
    Song, J., Zhu, A.D., Zhang, S.: Quantum secure direct communication protocol with blind polarization bases and particles' transmitting order. Chin. Phys. 16(3), 621–623 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Créau, C., Salvail, L.: Quantum oblivious mutual identification. Advances in cryptology. In: Proceedings of Eurocrypt ’ 95, p. 133. Springer, Berlin (1995)Google Scholar
  14. 14.
    Dušek, M., Haderka, O., Hendrych, M., Myška, R.: Quantum identification system. Physical Review A - Atomic, Molecular, and Optical Physics. 60, 149–156 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Lee, H., Lim, J., Yang, H.J.: Quantum direct communication with authentication. Phys. Rev. A. 73, 042305 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Zhang, Z., Zeng, G., Zhou, N.: Quantum identity authentication based on ping-pong technique for photons. Phys. Lett. A. 356(3), 199–205 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Yang, Y.G., Wen, Q.Y.: Economical multiparty simultaneous quantum identity authentication based on Greenberger–Horne–Zeilinger states. Acta Phys. Sin. 18(8), 3233–3237 (2009)Google Scholar
  18. 18.
    Yang, Y.G., Tian, J., Xia, J.: Quantum authenticated direct communication using Bell states. Int. J. Theor. Phys. 52(2), 336–344 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Yuan, H., Liu, Y.M., Pan, G.Z.: Quantum identity authentication based on ping-pong technique without entanglements. Quantum Inf. Process. 13(11), 2535–2549 (2014)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Hong, C.H., Heo, J., Jang, J.G.: Quantum identity authentication with single photon. Quantum Inf. Process. 16(10), 236 (2017)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Kang, M.S., Heo, J., Hong, C.H.: Controlled mutual quantum entity authentication with an untrusted third party. Quantum Inf. Process. 17(10), 159 (2018)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys.Rev. Lett. 91, 057901 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.H.: Practical quantum oblivious transfer. Lect. Notes Comput. Sci. 576(12), 351–366 (1991)Google Scholar
  24. 24.
    Li, X.Y., Chen, L.J.: Quantum authentication protocol using Bell state. International Symposium on Data. IEEE. pp. 128-132 (2007)Google Scholar
  25. 25.
    Kim, Y.H., Kulik, S.P., Shih, Y.H.: Quantum teleportation of a polarization state with a complete Bell state measurement. Physical Review Letters. Vol. 86, 1370–1373 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    Cinelli, C., Barbieri, M., Martini, F.D., Mataloni, P.: Realization of hyperentangled two-photon states. International Journal of Laser Physics. 15(1), 124–128 (2005)Google Scholar
  27. 27.
    Zhou, N.R., Zhu, K.N., Zou, X.F.: Multi-party semi-quantum key distribution protocol with four-particle cluster states. Ann. Phys. 531, 1800520 (2019)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lo, H.: Unconditional security of quantum key distribution over arbitrarily long distances. Science. 283(5410), 2050–2056 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    Hong, C.H., Heo, J., Jang, J.G.: Quantum identity authentication with single photon. Quantum Inf. Process. 16(10), 236 (2017)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Shi, R.H., Huang, L.S., Yang, W.: Quantum secret sharing between multiparty and multiparty with Bell states and Bell measurements. Sci. China, Ser. G. 53(12), 2238–2244 (2010)CrossRefGoogle Scholar
  32. 32.
    Abulkasim, H., Hamad, S., Khalifa, A.: Quantum secret sharing with identity authentication based on Bell states. International Journal of Quantum Information. 15(04), 5 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Kang, M.S., Hong, C.H., Heo, J.: Controlled mutual quantum entity authentication using entanglement swapping. Acta Phys. Sin. 24(9), 90306–090306 (2015)Google Scholar
  34. 34.
    Zawadzki, P.: Quantum identity authentication without entanglement. Quantum Inf. Process. 18, 1 (2019)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Gong, L.H., Li, J.F., Zhou, N.R.: Continuous variable quantum network dialogue protocol based on single-mode squeezed states. Laser Phys. Lett. 15(10), 105204 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    Zhou, N.R., Zhu, K.N., Bi, W., Gong, L.H.: Semi-quantum identification. Quantum Inf. Process. 18(6), 197 (2019)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyAnhui UniversityHefei CityChina

Personalised recommendations