Advertisement

Quantum Information Splitting of Arbitrary Two-Qubit State Via a Five-Qubit Cluster State and a Bell-State

Abstract

We propose a scheme for Quantum Information Splitting of Arbitrary Two-qubit State via a Five-qubit Cluster State and a Bell-state as the quantum channels. There exist a sender (Alice) and two receivers (Bob and Charlie), who share a seven-qubit cluster state as the quantum channel. Alice performs a Bell-state measurements (BSMs) on her qubit pairs, Alice reveals the results to Bob and Charlie via a classical channel. If it is impossible without the help from Charlie for Bob to reconstruct the original information. Charlie performs GHZ-state measurements on his particles and informs Bob about the result. Bob will perform unitary operations to reconstruct the original state information. This scheme is tested for different eavesdropping attacks, of which eavesdropping is easy to detect. In addition, we compared the agreement, such as the number of particles in the program itself, the method of measurement and the efficiency of measurement, etc. All of those prove the innovation of the comprehensive measurement method in this experiment. Overall, we can get the conclusion from the comparison that the scheme is more stable and robust in terms of transmission efficiency and security.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1

References

  1. 1.

    Ma R. L: Quantum cryptographic communication [M]. Beijing: Science press, 2006: 41-42

  2. 2.

    Bennett C H, Brassard G , Crepeau C, et al.: Teleporting an Unknown Quantum State Via Dual Classical and Einstein-Podolsky-Rosen Channels[C]// Quantum Entanglement and Quantum Information--Proceedings of CCAST (World Laboratory) Workshop. (1999)

  3. 3.

    Bhaktavatsala Rao, D.D., Ghosh, S., Panigrahi, P.K.: Generation of entangled channels for perfect teleportation using multielectron quantum dots[J]. Phys. Rev. A. 78(4), 042328 (2008)

  4. 4.

    Lin, X.M., Zhou, Z.W., Xue, P., et al.: Scheme for implementing quantum dense coding via cavity QED[J]. Phys. Lett. A. 313(5–6), 351–355 (2003)

  5. 5.

    Yuanhua, L.I., Junchang, L., Yiyou, N.: Quantum Information Splitting by Using a Genuinely Entangled Six-qubit State and Bell-state Measurements[J]. Guangzi Xuebao/Acta Photonica Sinica. 40(2), 307–310 (2011)

  6. 6.

    Nie, Y.Y., Li, Y.H., Liu, J.C., et al.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states[J]. Quantum Inf. Process. 10(3), 297–305 (2011)

  7. 7.

    Li, D.F., Wang, R.J., Zhang, F.L., et al.: Quantum information splitting of a two-qubit bell state using a four-qubit entangled state[J]. Chin. Phys. C. 54(4), 3229–3237 (2015)

  8. 8.

    Nie, Y., Li, Y., Liu, J., et al.: Quantum information splitting of an arbitrary three-qubit state by using a genuinely entangled five-qubit state and a Bell-state.[J]. Quantum Inf. Process. 11(2), 563–569 (2012)

  9. 9.

    Hillery, M., Vladimír, B., André, B., et al.: Quantum secret sharing[M]. Phys. Rev. A. 59(3), 1829 (1999)

  10. 10.

    Nie, Y.Y., Li, Y.H., Liu, J.C., et al.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states[J]. Quantum Inf. Process. 10(3), 297–305 (2011)

  11. 11.

    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting[J]. Phys. Rev. A. 59(1), 162–168 (1999)

  12. 12.

    Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret[J]. Phys. Rev. Lett. 83(3), 648–651 (1999)

  13. 13.

    Li, M.L., Liu, J.J., Hong, W.L., et al.: Four - particle entangled state is used to realize single particle information splitting[J]. Acta Sinica Quant. Optic. 19(2), 141–145 (2013)

  14. 14.

    Murao, M., Jonathan, D., Plenio, M.B., et al.: Quantum telecloning and multiparticle entanglement[J]. Phys. Rev. A. 59(1), 156–161 (1999)

  15. 15.

    Yang, C.P., Chu, S.I., Han, S., et al.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement[J]. Phys. Rev. A. 70(2), 022329 (2004)

  16. 16.

    Li, Y.H., Li, X.L., Sang, M.H., et al.: Splitting unknown two-Qubit state using five-Qubit entangled state[J]. Int. J. Theor. Phys. 53(1), 111–115 (2014)

  17. 17.

    Yin, A., Wang, J.: Quantum Information Splitting of Arbitrary Three-qubit State by Using Five-qubit Cluster state and GHZ-state[J]. Int. J. Theor. Phys. 55(12), 1–15 (2016)

  18. 18.

    Chen, Y.: Splitting an Arbitrary Two-ubit State Via a Seven-qubit Maximally Entangled State[J]. Int. J. Theor. Phys. 54(5), 1–4 (2014)

  19. 19.

    Hu, Y.A., Ye, Z.Q.: Controlled quantum bidirectional teleportation and its security based on GHZ state[J]. J. Opt. 43(8), 182–186 (2014)

  20. 20.

    Wang, X.P., Sang, M.H.: Splitting an Arbitrary Three-Qubit State by Using Seven-Qubit Composite GHZ-Bell State[J]. Int. J. Theor. Phys. 53(3), 1064–1069 (2014)

  21. 21.

    Nie, Y.Y., Sang, M.H., Li, Y.H., et al.: Three-Party Quantum Information Splitting of[J]. Int. J. Theor. Phys. 50(5), 1367–1371 (2011)

  22. 22.

    Sang, M.H., Dai, H.L.: Quantum Splitting a Two-qubit State with a Genuinely Entangled Five-qubit State[J]. Int. J. Theor. Phys. 53(8), 2708–2711 (2014)

  23. 23.

    Panigrahi, P.K., Karumanchi, S., Muralidharan, S.: Minimal classical communication and measurement complexity for quantum information splitting of a two-qubit state[J]. Pramana. 73(3), 499–504 (2009)

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (61802033), Postdoctoral Research Foundation of China (2018 M643453), Science and Technology projects in Sichuan Province (2019YJ0543), also supported by the Opening Project of Guangdong Provincial Key Laboratory of Information Security Technology (2017B030314131).

Author information

Correspondence to Dongfen Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Li, D., Liu, M. et al. Quantum Information Splitting of Arbitrary Two-Qubit State Via a Five-Qubit Cluster State and a Bell-State. Int J Theor Phys 59, 187–199 (2020) doi:10.1007/s10773-019-04310-5

Download citation

Keywords

  • Five-qubit cluster state
  • Quantum information splitting
  • GHZ-state measurement
  • Bell-state measurement
  • Quantum communication protocol comparison