International Journal of Theoretical Physics

, Volume 59, Issue 1, pp 166–172 | Cite as

Quantum Bidirectional Teleportation 2 ↔ 2 or 2 ↔ 3 Qubit Teleportation Protocol Via 6-Qubit Entangled State

  • Ri-Gui ZhouEmail author
  • Xin Li
  • Chen Qian
  • Hou Ian


In this paper, firstly we propose a new protocol for quantum bidirectional teleportation of two particles in a six-qubit entangled channel, which is based on GHZ measurement and unitary operation. Then, also based on the six-qubit entangled state channel, a protocol for quantum bidirectional teleportation of two-three particles is proposed. The protocol utilizes Toffoli gate to convert three-qubit states into two-qubit states and a single qubit, and the rest of the teleportation is the same as the first protocol. Finally, we introduce an auxiliary bit to restore the state of the sender. Both these proposed protocols are more efficient than others in the same situation, which will be compared at the end of the paper.


Quantum bidirectional teleportation Six-qubit entangled channel GHZ measurement Toffoli gate 



This work is supported by the National Key R&D Plan under Grant No. 2018YFC1200200 and 2018YFC1200205, National Natural Science Foundation of China under Grant No. 61463016 and “Science and technology innovation action plan” of Shanghai in 2017 under Grant No. 17510740300. H.I. acknowledge the support by FDCT of Macau under grant 013/2013/A1, University of Macau under grants MRG022/IH/2013/FST and MYRG2014-00052-FST, and National Natural Science Foundation of China under grant No.11404415.


  1. 1.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Quantum Entanglement & Quantum Information- Ccast. 70, 1895 (1999)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Tan, X., Zhang, X., Fang, J.: Perfect quantum teleportation by four-particle cluster state. Inf. Process. Lett. 116, 347–350 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Li, M., Zhao, N., Chen, N., Zhu, C., Pei, C.: Quantum teleportation of five-qubit state. Int. J. Theor. Phys. 56, 2710–2715 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Zhang, B., Liu, X., Wang, J., Tang, C.: Quantum teleportation of an arbitrary N -qubit state via GHZ-like states. Int. J. Theor. Phys. 55, 1601–1611 (2016). CrossRefzbMATHGoogle Scholar
  5. 5.
    Zhou, S., Bai, M., Liao, T., Lei, J., Tang, L., Zhang, C.: Bidirectional quantum operation teleportation with different states. Int. J. Quantum Inf. 16, (2018). ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Sarvaghad-Moghaddam, M., Fatahi, N.: A general bidirectional controlled/uncontrolled quantum teleportation protocol. Quantum Phys. (2018)Google Scholar
  7. 7.
    Choudhury, B.S., Samanta, S.: Asymmetric bidirectional 3 ⇔ 2 Qubit teleportation protocol between alice and bob via 9-qubit cluster state. Int. J. Theor. Phys. 56, 3285–3296 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Zhou, R., Qian, C., Ian, H.: Bidirectional quantum teleportation of two-Qubit state via four-Qubit cluster state. Int. J. Theor. Phys. 58, 150–156 (2018)CrossRefGoogle Scholar
  9. 9.
    Cao, Y., Zha, X., Wang, S.: Controller-independent bidirectional direct communication with four-Qubit cluster states. Int. J. Theor. Phys. 57, 2007–2014 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Choudhury, B.S., Dhara, A.: Teleportation protocol of three-Qubit state using four-Qubit quantum channels. Int. J. Theor. Phys. 55, 3393–3399 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Sang, M.H.: Bidirectional quantum teleportation by using five-qubit cluster state. Int. J. Theor. Phys. 55, 1333–1335 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Zhong-min, L., Lin, Z.: Quantum teleportation of a three-qubit state using a five-qubit cluster state. Int. J. Theor. Phys. 53, 4079–4082 (2014). CrossRefzbMATHGoogle Scholar
  13. 13.
    Chen, Y.: Bidirectional controlled quantum teleportation by using five-Qubit entangled state. Int. J. Theor. Phys. 53, 1454–1458 (2014). CrossRefzbMATHGoogle Scholar
  14. 14.
    Tan, X., Zhang, X., Song, T.: Deterministic quantum teleportation of a particular six-qubit state using six-qubit cluster state. Int. J. Theor. Phys. 55, 155–160 (2016). CrossRefzbMATHGoogle Scholar
  15. 15.
    Li, Y.h., Sang, M.h., Wang, X.P., Nie, Y.y.: Quantum teleportation of a four-qubit state by using six-qubit cluster state. Int. J. Theor. Phys. 55, 3547–3550 (2016). CrossRefzbMATHGoogle Scholar
  16. 16.
    Choudhury, B.S., Dhara, A., Samanta, S.: Teleportation of five-Qubit state using six-Qubit state. Phys. Part. Nucl. Lett. 14, 644–646 (2017). CrossRefGoogle Scholar
  17. 17.
    Yang, Y., Jiang, M., Zhou, L.L.: Improving the teleportation scheme of five-Qubit state with a seven-Qubit quantum channel. Int. J. Theor. Phys. 57, 3485–3491 (2018). CrossRefzbMATHGoogle Scholar
  18. 18.
    Li, W., Zha, X.-W., Qi, J.-X.: Tripartite quantum controlled teleportation via seven-Qubit cluster state. Int. J. Theor. Phys. 55, 3927–3933 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Duan, Y.J., Zha, X.W., Sun, X.-M., Xia, J.-F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53, 2697–2707 (2014). CrossRefzbMATHGoogle Scholar
  20. 20.
    Li, Y.h., Nie, L.p., Li, X.l., Sang, M.h.: Asymmetric bidirectional controlled teleportation by using six-qubit cluster state. Int. J. Theor. Phys. 55, 3008–3016 (2016). CrossRefzbMATHGoogle Scholar
  21. 21.
    Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15, 905–912 (2016). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Sadeghi Zadeh, M.S., Houshmand, M., Aghababa, H.: Bidirectional teleportation of a two-Qubit state by using eight-Qubit entangled state as a quantum channel. Int. J. Theor. Phys. 56, 2101–2112 (2017). MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Information EngineeringShanghai Maritime UniversityShanghaiChina
  2. 2.Research Center of Intelligent Information Processing and Quantum Intelligent ComputingShanghaiChina
  3. 3.Institute of Applied Physics and Materials Engineering, FSTUniversity of MacauMacauChina

Personalised recommendations